Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Particle number emissions from standard and hybrid SI passenger cars

2019-12-19
2019-01-2194
This paper presents the PN (Particle Number) and some gaseous emissions results from a group of SI (Spark Ignition) passenger cars including HEV (Hybrid Electric Vehicle), PFI (Port Fuel Injection) and GDI (Gasoline Direction Injection) vehicles. The PEMS (Portable Emission Measurement System) was used for on-board emission measurements. The vehicles were driven using the routes complying with the EU Real Driving Emissions (RDE) test procedures required in the European Commission Regulation (EU) 2016/427, i.e. starting in an urban driving mode and then continuing into a rural driving mode and ending with motorway driving mode part. The percentage of these three segments is approximately 33%, 33%, 33% respectively. The total test time was between 90 to 120 minutes. The vehicles’ driving parameters such as road speed, tailpipe exhaust temperatures and energy consumption were recorded and their correlations with emissions were investigated.
Technical Paper

Proceedings of Real Driving Emission (RDE) Measurement in China

2018-04-03
2018-01-0653
Light-duty China-6, which is among the most stringent vehicle exhaust emission standards globally, mandates the monitoring and reporting of real driving emissions (RDE) from July, 2023. In the process of regulation promulgation and verification, more than 300 RDE tests have been performed on over 50 China-5 and China-6 certified models. This technical paper endeavors to summarize the experience of RDE practice in China, and discuss the impacts of some boundary conditions (including vehicle dynamic parameters, data processing methods, hybrid propulsion and testing altitude) on the result of RDE measurement. In general, gasoline passenger cars confront few challenges to meet the upcoming RDE NOx requirement, but some China-5 certified samples, even powered by naturally-aspirated engines may have PN issues. PN emissions from some GDI-hybrid powertrain systems also need further reduction to meet China-6 RDE requirements.
Journal Article

Investigation of Combustion and Emission Performance of Hydrogenated Vegetable Oil (HVO) Diesel

2017-10-08
2017-01-2400
Hydrogenated Vegetable Oil (HVO) diesel fuels have the potential to provide a reduced carbon footprint for diesel engines and reduce exhaust emissions. Therefore, it is a strong candidate for transport and diesel powered machines including electricity generators and other off-road machines. In this research, a waste cooking oil derived HVO diesel was investigated for its combustion and emission performance including ignition delays, size segregated particulate number emissions and gaseous emissions. The results were compared to the standard petroleum diesel. A EURO5 emission compliant three litre, direct injection, intercooled IVECO diesel engine equipped with EGR was used which has a maximum power output of 96kW. The engine was equipped with an integrated DOC and DPF aftertreatment system. Both the upstream and downstream of the aftertreatment emissions were measured. The tests were conducted at different RPM and loads at steady state conditions.
Technical Paper

Cold Start SI Passenger Car Emissions from Real World Urban Congested Traffic

2015-04-14
2015-01-1064
The tailpipe exhaust emissions were measured under real world urban driving conditions by using a EURO4 emissions compliant SI car equipped with an on-board heated FTIR for speciated gaseous emission measurements, a differential GPS for travel profiles, thermocouples for temperatures, and a MAX fuel meter for transient fuel consumption. Emissions species were measured at 0.5 Hz. The tests were designed to enable cold start to occur into congested traffic, typical of the situation of people living alongside congested roads into a large city. The cold start was monitored through temperature measurements of the TWC front and rear face temperatures and lubricating oil temperatures. The emissions are presented to the end of the cold start, defined when the downstream TWC face temperature is hotter than the front face which occurred at ∼350-400oC. Journeys at various times of the day were conducted to investigate traffic flow impacts on the cold start.
Technical Paper

Emissions from a HGV Using Used Cooking Oil as a Fuel under Real World Driving Conditions

2015-04-14
2015-01-0905
To maximize CO2 reduction, refined straight used cooking oils were used as a fuel in Heavy Goods Vehicles (HGVs) in this research. The fuel is called C2G Ultra Biofuel (C2G: Convert to Green Ltd) and is a fully renewable fuel made as a diesel replacement from processed used cooking oil, used directly in diesel engines specifically modified for this purpose. This is part of a large demonstration project involving ten 44-tonne trucks using C2G Ultra Biofuel as a fuel to partially replace standard diesel fuels. A dual fuel tank containing both diesel and C2G Ultra Biofuel and an on-board fuel blending system-Bioltec system was installed on each vehicle, which is able to heat the C2G Ultra Biofuel and automatically determine the required blending ratio of diesel and C2G Ultra Biofuel according to fuel temperature and engine load. The engine was started with diesel and then switched to C2G Ultra Biofuel under appropriate conditions.
Technical Paper

Fuel Consumption and GHG Reductions by using Used Cooking Oil as a Fuel in a HGV under Real World Driving Conditions

2014-10-13
2014-01-2727
Direct use of straight vegetable oil based biofuels in diesel engines without trans-esterification can deliver more carbon reductions compared to its counterpart biodiesel. However, the use of high blends of straight vegetable oils especially used cooking oil based fuels in diesel engines needs to ensure compatible fuel economy with PD (Petroleum Diesel) and satisfactory operational performance. There are two ways to use high blends of SVO (Straight Vegetable Oil) in diesel engines: fixed blending ratio feeding to the engine and variable blending ratio feeding to the engine. This paper employed the latter using an on-board blending system-Bioltec system, which is capable of heating the vegetable oils and feeding the engine with neat PD or different blends of vegetable oils depending on engine load and temperature.
Journal Article

Speciation of Nitrogen Compounds in the Tailpipe Emissions from a SI Car under Real World Driving Conditions

2014-10-13
2014-01-2812
The tailpipe exhaust emissions were measured using a EURO4 emissions compliant SI car equipped with on-board measurement systems such as a FTIR system for gaseous emission, a differential GPS for velocity, altitude and position, thermal couples for temperatures, and a MAX fuel meter for transient fuel consumption. Various nitrogen species emissions (NO, NO2, NOx, NH3, HCN and N2O) were measured at 0.5 Hz. The tests were designed and employed using two real world driving cycles/routes representing a typical urban road network located in a densely populated area and main crowded road. Journeys at various times of the day were conducted to investigate traffic conditions impacts such as traffic and pedestrian lights, road congestion, grade and turning on emissions, engine thermal efficiency and fuel consumption. The time aligned vehicle moving parameters with Nitrogen pollutant emission data and fuel consumption enabled the micro-analysis of correlations between these parameters.
Journal Article

Determination of GHG Emissions, Fuel Consumption and Thermal Efficiency for Real World Urban Driving using a SI Probe Car

2014-04-01
2014-01-1615
A SI probe car, defined here as a normal commercial car equipped with GPS, in-vehicle FTIR tailpipe emission measurement and real time fuel consumption measurement systems, and temperature measurements, was used for measuring greenhouse gas emissions including CO2, N2O and CH4 under real world urban driving conditions. The vehicle used was a EURO4 emission compliant SI car. Two real world driving cycles/routes were designed and employed for the tests, which were located in a densely populated area and a busy major road representing a typical urban road network. Eight trips were conducted at morning rush hours, day time non-peak traffic periods and evening off peak time respectively. The aim is to investigate the impacts of traffic conditions such as road congestion, grade and turnings on fuel consumption, engine thermal efficiency and emissions.
Journal Article

Determination of Carbon Footprint using LCA Method for Straight Used Cooking Oil as a Fuel in HGVs

2014-04-01
2014-01-1948
In order to improve energy supply diversity and reduce carbon dioxide emissions, sustainable bio-fuels are strongly supported by EU and other governments in the world. While the feedstock of biofuels has caused a debate on the issue of sustainability, the used cooking oil (UCO) has become a preferred feedstock for biodiesel manufacturers. However, intensive energy consumption in the trans-esterification process during the UCO biodiesel production has significantly compromised the carbon reduction potentials and increased the cost of the UCO biodiesel. Moreover, the yield of biodiesel is only ∼90% and the remaining ∼10% feedstock is wasted as by-product glycerol. Direct use of UCO in diesel engines is a way to maximize its carbon saving potentials.
Book

Automotive Fuels Reference Book, Third Edition

2014-03-05
The first two editions of this title, published by SAE International in 1990 and 1995, have been best-selling definitive references for those needing technical information about automotive fuels. This long-awaited new edition has been thoroughly revised and updated, yet retains the original fundamental fuels information that readers find so useful. This book is written for those with an interest in or a need to understand automotive fuels. Because automotive fuels can no longer be developed in isolation from the engines that will convert the fuel into the power necessary to drive our automobiles, knowledge of automotive fuels will also be essential to those working with automotive engines. Small quantities of fuel additives increasingly play an important role in bridging the gap that often exists between fuel that can easily be produced and fuel that is needed by the ever-more sophisticated automotive engine.
Journal Article

Sodium Contamination of Diesel Fuel, its Interaction with Fuel Additives and the Resultant Effects on Filter Plugging and Injector Fouling

2013-10-14
2013-01-2687
Diesel fuel distilled from crude oil should contain no greater than trace amounts of sodium. However, fuel specifications do not include sodium; there is a limit of five parts per million for the amount of sodium plus potassium in fatty acid methyl esters (FAME) used as biodiesel. Sodium compounds are often used as the catalyst for the esterification process for producing FAME and sodium hydroxide is now commonly used in the refining process to produce ultra-low sulphur diesel (ULSD) fuel from crude oil. Good housekeeping should ensure that sodium is not present in the finished fuel. A finished fuel should not only be free of sodium but should also contain a diesel fuel additive package to ensures the fuel meets the quality standards introduced to provide reliable operation, along with the longevity of the fuel supply infrastructure and the diesel engines that ultimately burn this fuel.
Technical Paper

Real World Diesel Engine Greenhouse Gas Emissions for Diesel Fuel and B100

2013-04-08
2013-01-1514
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function temperature. It should be highlighted that methane is a greenhouse gas that similarly to carbon dioxide contributes to global warming and climate change. An oxidation catalyst was used to investigate CO₂, N₂O and CH₄ GHG emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. The results were determined under hot start conditions, but in congested traffic the catalyst cooled below its light-off temperature and this resulted in considerable N₂O emissions as the oxidation catalyst temperature was in the N₂O formation band. This showed higher N₂O during hot start than for diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME.
Journal Article

Comparison of Gaseous Emissions for B100 and Diesel Fuels for Real World Urban and Extra Urban Driving

2012-09-10
2012-01-1674
A Euro 3 1.8-liter diesel vehicle with an oxidation catalyst was used to investigate real-world exhaust emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. Diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME. A multifunctional additive package was added at 800 ppm to control fuel injector deposit formation. Gaseous emissions were monitored using an on-board heated Temet FTIR exhaust emission analyzer, which can measure 52 species at a rate of 0.5 Hz. A Horiba on board emissions measuring system was also used (OBS 1300), which measures the exhaust mass flow rate together with air/fuel ratio.
Technical Paper

Real World Cold Start Emissions from a Diesel Vehicle

2012-04-16
2012-01-1075
This study uses on-board measurement systems to analyze emissions from a diesel engine vehicle during the cold start period. An in-vehicle FTIR (Fourier Transform Inferred) spectrometer and a Horiba on-board measurement system (OBS-1300) were installed on a EURO3 emission-compliant 1.8 TDCi diesel van, in order to measure the emissions. Both regulated and non-regulated emissions were measured, along with an analysis of the NO/NO₂ split. A VBOX GPS system was used to log coordinates and road speed for driving parameters and emission analysis. Thermal couples were installed along the exhaust system to measure the temperatures of exhaust gases during cold start. The real-time fuel consumption was measured. The study also looks at the influence of velocity on emissions of hydrocarbons (HCs) and NOx. The cold start period of an SI-engine-powered vehicle, was typically around 200 seconds in urban driving conditions.
Technical Paper

Analysis of Various Driving Parameters and Emissions for Passenger Cars Driven With and Without Stops at Intersections under Different Test Cycles

2012-04-16
2012-01-0880
Different driving test cycles, the Leeds-West Park (LWP) loop and the Leeds-High Park (LHP) or HPL-A and B (Leeds-Hyde Park Loop-A or B, hereafter referred as HPL-A or B cycle) loop were selected for this urban intersection research and results are presented in this study. Different emissions-compliant petrol passenger cars (EURO 1, 2, 3 and 4) were compared for their real-world emissions. A reasonable distance of steady state speed was needed and for the analysis made in this paper were chosen vehicle speeds at ~20, ~30 and ~40 km/h. Specific spot of periods of driving at the speeds mentioned above were identified, then the starting and ending point was found and the total emissions in g for that period divided by the distance was calculated. A typical urban driving cycle including a loop and a section of straight road was used for the comparison test as it was similar to the legislative ECE15 urban driving cycle.
Journal Article

Possible Mechanism for Poor Diesel Fuel Lubricity in the Field

2012-04-16
2012-01-0867
Traditionally, diesel fuel injection equipment (FIE) has frequently relied on the diesel fuel to lubricate the moving parts. When ultra low sulphur diesel fuel was first introduced into some European markets in the early 1980's it rapidly became apparent that the process of removing the sulphur also removed other components that had bestowed the lubricating properties of the diesel fuel. Diesel fuel pump failures became prevalent. The fuel additive industry responded quickly and diesel fuel lubricity additives were introduced to the market. The fuel, additive and FIE industries expended much time and effort to develop test methods and standards to try and ensure this problem was not repeated. Despite this, there have recently been reports of fuel reaching the end user with lubricating performance below the accepted standards.
Technical Paper

Rape Seed Oil B100 Diesel Engine Particulate Emissions: The Influence of Intake Oxygen on Particle Size Distribution

2012-04-16
2012-01-0435
Pure rape seed oil (RSO), as coded BO100 (BO: Bio-Oil) to distinguish from biodiesel was investigated for a range of intake oxygen levels from 21 to 24%. RSO can have deposit problems in both the fuel injector and piston crown and elevated intake oxygen levels potentially could control these by promoting their oxidation. Increased intake oxygen elevates the peak temperature and this promotes the oxidation of soot and volatile organic compounds. The effect of this on particle mass and on the particle size distribution was investigated using a 6-cylinder 6-liter Perkins Phaser Euro 2 DI diesel engine. The tests were conducted at 47 kW brake power output at 1500 rpm. The particle size distribution was determined from the engine-out exhaust sample using a Dekati microdilution system and nano-SMPS analyzer. The results showed that for air RSO had higher particle mass than diesel and that this mass decreased as the oxygen level was increased.
Journal Article

Investigations on Deposit Formation in the Holes of Diesel Injector Nozzles

2011-08-30
2011-01-1924
Current developments in fuels and emissions regulations are resulting in an increasingly severe operating environment for diesel fuel injection systems. The formation of deposits within the holes or on the outside of the injector nozzle can affect the overall system performance. The rate of deposit formation is affected by a number of parameters, including operating conditions and fuel composition. For the work reported here an accelerated test procedure was developed to evaluate the relative importance of some of these parameters in a high pressure common rail fuel injection system. The resulting methodology produced measurable deposits in a custom-made injector nozzle on a single-cylinder engine. The results indicate that fuels containing 30%v/v and 100% Fatty Acid Methyl Ester (FAME) that does not meet EN 14214 produced more deposit than an EN590 petroleum diesel fuel.
Technical Paper

An Investigation Into Transient Diesel Spray Development Using High Speed Imaging In A Novel Optical Pressure Chamber

2011-08-30
2011-01-1836
The fuel economy and emissions performance of a Diesel engine is strongly influenced by the fuel injection process. This paper presents early results of an experimental investigation into diesel spray development carried out in a novel in-house developed optical pressure chamber capable of operating at pressure up to 50 bar and temperatures up to 900 K. The spatial evolution of a diesel spray tends to experience many transitory macroscopic phenomena that directly influence the mixing process. These phenomena are not considered highly reproducible and are extremely short lived, hence recording and understanding these transient effects is difficult. In this study, high-speed backlight-illuminated imaging has been employed in order to capture the transient dynamics of a short signal duration diesel spray injected into incremental back pressures and temperatures reaching a maximum of 10 bar and 473 K respectively.
Technical Paper

Insights into Deposit Formation in High Pressure Diesel Fuel Injection Equipment

2010-10-25
2010-01-2243
The need to meet the US 2007 emissions legislation has necessitated a change in Diesel engine technology, particularly to the fuel injection equipment (FIE). At the same time as these engine technology changes, legislation has dictated a reduction in fuel sulphur levels and there has also been increased use of fatty acid methyl esters (FAME) or biodiesel as a fuel blending component. The combination of changes to the engine and the fuel has apparently led to a sharp rise in the number of reports of field problems resulting from deposits within the FIE. The problem is usually manifested as a significant loss of power or the engine failing to start. These symptoms are often due to deposits to be found within the fuel injectors or to severe fouling of the fuel filter. The characteristics of the deposits found within different parts of the fuel system can be noticeably different.
X