Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

Evaluation of Braking Strategies on Downgrades

In this study, experimental methods were used to compare the consequences of employing snubbing versus dragging strategies to control the speeds of trucks on downgrades. Vehicle tests were performed on a long steep grade. A mobile dynamometer was used to study cooling rates and hot spotting. The basic findings of the study are: (1) the average temperature per pound (kilogram) of brake drum is practically equivalent whether light dragging or snubbing is used; (2) the hottest brakes will be cooler if snubbing is used; and(3) on short downhill descents, the dragging strategy will cause hot spots to develop to a greater extent. For many years there has been controversy between those that recommend dragging brakes versus those that recommend snubbing (pulsing) to control vehicle speed during downhill descents. Recently, interest in commercial driver licensing (CDL) has stimulated discussions of the merits of these two braking strategies.
Technical Paper

Vehicle Design Implications of the Turner Proposal

The implications of restricting axle loads to preserve pavements while at the same time allowing gross combination weights over 80,000 pounds are examined with respect to the design qualities of the types of heavy trucks that might be developed. The proposed vehicles would have more axles than current designs thereby achieving higher gross combination weights with smaller axle loads. Design factors influencing mobility, productivity, preservation of the highway infrastructure, and performance in safety-related maneuvers are discussed.
Technical Paper

Directional Dynamics Considerations for Multi-Articulated, Multi-Axled Heavy Vehicles

Directional performance characteristics of heavy truck combinations are reviewed with respect to the influences of multiple axles and articulation points. The performance characteristics considered include steady turning, directional stability, and forced responses in obstacle avoidance maneuvers. The review provides useful insights to engineers interested in the handling and safety qualities of these types of vehicles.
Technical Paper

Safety Implications of Trucks Designed to Weigh Over 80,000 Pounds

A method is presented for checking vehicle designs to see if they will meet size and weight rules that may be applicable to vehicles weighing more than 80,000 lb. Then, examples of heavy trucks that have been designed to be productive are used in illustrating analytical evaluations of measures of performance in safety-related maneuvering situations. The paper concludes with the point of view that trucks over 80,000 lb could have design attributes that would allow these heavier vehicles to have levels of intrinsic safety exceeding or comparable to those of current trucks.
Technical Paper

The Transient Directional Response of Full Trailers

Frequency response methods are applied in developing an understanding of the influence of design parameters on the directional performance of commercial vehicle combinations employing full trailers. Transfer functions are used to describe the contributions of full trailers, trucks, and tractor-semitrailers to the rearward amplification between the lateral accelerations of the towing and last units in truck-full trailers, doubles, and triples combinations. These transfer functions show how forward velocity, distances from pintle hitches to center-of-gravity locations, and cornering coefficients influence rearward amplification.
Technical Paper

Preliminary Measurements of the Longitudinal Traction Properties of Truck Tires

A mobile dynamometer has been constructed for measurement of the longitudinal force/slip characteristics of truck tires. The application of this apparatus in testing of a preliminary sample of tires has indicated that the shear force production properties of truck tires differ in many respects from the corresponding behavior of passenger car tires. These differences are discussed in terms of shear force sensitivity to a number of operating variables. The inadequacy of current semi-empirical tire models in representing truck tire traction is noted.