Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

A Dual-Fuel Model of Flame Initiation and Propagation for Modelling Heavy-Duty Engines with the G-Equation

2023-09-29
2023-32-0009
We propose a novel dual-fuel combustion model for simulating heavy-duty engines with the G-Equation. Dual-Fuel combustion strategies in such engines features direct injection of a high-reactivity fuel into a lean, premixed chamber which has a high resistance to autoignition. Distinct combustion modes are present: the DI fuel auto-ignites following chemical ignition delay after spray vaporization and mixing; a reactive front is formed on its surroundings; it develops into a well-structured turbulent flame, which propagates within the premixed charge. Either direct chemistry or the flame-propagation approach (G- Equation), taken alone, do not produce accurate results. The proposed Dual-Fuel model decides what regions of the combustion chamber should be simulated with either approach, according to the local flame state; and acts as a “kernel” model for the G- Equation model. Direct chemistry is run in the regions where a premixed front is not present.
Technical Paper

Soot Formation and Ignition Characteristics of Ethanol/Gasoline Blends in a Rapid Compression Machine

2023-04-11
2023-01-0385
With the ever-increasing demand for sustainable energy, alcohol fuels have garnered interest for use in heavy duty engines. The significant infrastructure for ethanol production and blending of ethanol with gasoline make these fuels/fuel blends desirable candidates. However, development of heavy duty engine technology that is capable of burning alcohol fuels while retaining the advantages of traditional diesel combustion requires an improved understanding of the soot formation for these fuels under conditions relevant to mixing-controlled combustion. This work uses an extinction diagnostic to study the sooting tendency of ethanol and gasoline/ethanol blends ranging from E10 to E98 during ignition in a homogeneous environment. Experiments were conducted in a rapid compression machine (RCM) for compressed conditions of 20 ± 1 bar and an approximately constant temperature (± 10K) which was unique for each fuel.
Technical Paper

Investigations of Ignition Delay Behavior in a CFR F5 Cetane Rating Engine and a Modern Heavy-Duty Diesel Engine

2022-03-29
2022-01-0446
The American Society for Testing and Materials (ASTM) D613 test method involves the use of a variable compression ratio CFR F5 engine to determine the cetane number of diesel fuels for use in compression ignition engines. The CFR F5 remains relatively unchanged since its conception, utilizing a swirl prechamber, mechanical jerk fuel pump, and a 10.3 MPa cracking pressure pintle nozzle mechanical injector. Recent efforts to improve the repeatability of the F5 engine involved the development of prototype engines equipped with electronic fuel injection (EFI) and upgraded high-speed instrumentation. These modifications have demonstrated the capability to improve the ASTM D613 precision limits by at least a factor of two. Parameterization of injection strategy has further optimized the test method, producing cycle-to-cycle variations of ignition delay analogous to modern day compression ignition engines.
Technical Paper

A Study of the Effect of Electronic Fuel Injection on the CFR F5 Cetane Rating Engine - Part II

2022-03-29
2022-01-0448
Over the past few decades, numerous studies have been performed to investigate how to improve the precision of the ASTM D613 Standard Test Method for Cetane Number of Diesel Fuel Oil. Many of these studies concluded that inconsistent combustion is the main contributing factor behind the lack of precision in the cetane number method, followed by shortcomings in the instrumentation used to measure ignition delay. This study is a continuation of recent work that investigated the benefits of installing a high-pressure common rail electronic fuel injection (EFI) system onto a CFR F5 cetane engine. The previous work presented baseline engine measurements that compared EFI against the original mechanical fuel injection system, along with computational fluid dynamics (CFD) simulations of the EFI injection and combustion processes. The previous work also indicated EFI makes it possible to improve the current ASTM D613 cetane test precision limits by at least a factor of two.
Technical Paper

Autoignition and Sooting Characteristics of Iso-Octane and Ethanol in an Optical Rapid Compression Machine

2022-03-29
2022-01-0419
With the introduction of EV technology into the light-duty vehicle market, the demand for gasoline in conventional spark ignition engines is projected to decline in the coming decades. Therefore, researchers have been investigating the use of gasoline and other light fuels in heavy-duty engine applications. In heavy-duty engines, the combustion mode will likely be non-premixed, mixing-controlled combustion, where the rate of combustion is determined by the fuel-air mixing process. This creates a range of mixture conditions inside the engine cylinder at every instance in time. The goal of this research is to experimentally quantify the sooting behaviors of light fuels under a range of compression ignition engine mixture conditions (i.e., a range of equivalence ratios).
Technical Paper

Inverted Reactivity Controlled Compression Ignition (iRCCI) with Methanol Fuel & Reactivity Enhancers

2022-03-29
2022-01-0464
Reactivity Controlled Compression Ignition (RCCI) is a low temperature combustion regime that has demonstrated ultra-low NOx and soot while achieving high thermal efficiency. RCCI uses a low reactivity premixed charge which is ignited via direct injection of a high reactivity fuel. The aim is to create a nearly homogeneous charge but maintain control over the combustion timing via the ratio between the premixed and direct injected fuel, hence controlling global reactivity via reactivity gradients in-cylinder. RCCI combustion with gasoline as the premixed fuel and diesel as the high reactivity fuel has shown good combustion timing controllability. However, RCCI with alcohol fuels, in which pure alcohol is the low reactivity premixed fuel and the alcohol doped with a reactivity enhancer is the direct injected high reactivity fuel, has shown a lack of control over the combustion timing, which is undesirable.
Technical Paper

Prechamber Enabled Mixing Controlled Combustion - A Fuel Agnostic Technology for Future Low Carbon Heavy-Duty Engines

2022-03-29
2022-01-0449
As the global economy grows, so does the demand for heavy-duty commercial vehicles, both on-road and off-road. Currently, these vehicles are powered almost entirely by diesel engines. There is an imminent need to reduce the greenhouse gases (GHG) from this growing sector, but alternatives to the internal combustion engine face many challenges and can increase GHG emissions. For example, through simple analysis, this work will show that a Class 8 long haul on-highway truck powered entirely by battery electrics and charged from the average US electrical grid, yields significantly higher CO2 emissions per ton-mile as compared to an engine using alternative fuels. Thus, the most pragmatic and impactful way to reduce GHG emissions in commercial vehicles is using low carbon alternative fuels, such as ethanol made from renewable sources.
Technical Paper

Emissions Benefits of Group Hole Nozzle Injectors under Conventional Diesel Combustion Conditions

2020-04-14
2020-01-0302
This work explores the effectiveness of common rail fuel injectors equipped with Grouped Hole Nozzles (GHNs) in aiding the mixing process and reducing particulate matter (PM) emissions of Conventional Diesel Combustion (CDC) engines, while maintaining manageable Oxides of Nitrogen (NOx) levels. Parallel (pGHN), converging (cGHN) and diverging (dGHN) - hole GHNs were studied and the results were compared to a conventional, single hole nozzle (SHN) with the same flow area. The study was conducted on a single cylinder medium-duty engine to isolate the effects of the combustion from multi-cylinder effects and the conditions were chosen to be representative of a typical mid-load operating point for an on-road diesel engine. The effects of injection pressure and the Start of Injection (SOI) timing were explored and the tradeoffs between these boundary conditions are examined by using a response surface fitting technique, to identify an optimum operating condition.
Journal Article

Understanding Hydrocarbon Emissions in Heavy Duty Diesel Engines Combining Experimental and Computational Methods

2017-03-28
2017-01-0703
Fundamental understanding of the sources of fuel-derived Unburned Hydrocarbon (UHC) emissions in heavy duty diesel engines is a key piece of knowledge that impacts engine combustion system development. Current emissions regulations for hydrocarbons can be difficult to meet in-cylinder and thus after treatment technologies such as oxidation catalysts are typically used, which can be costly. In this work, Computational Fluid Dynamics (CFD) simulations are combined with engine experiments in an effort to build an understanding of hydrocarbon sources. In the experiments, the combustion system design was varied through injector style, injector rate shape, combustion chamber geometry, and calibration, to study the impact on UHC emissions from mixing-controlled diesel combustion.
Journal Article

A Progress Review on Soot Experiments and Modeling in the Engine Combustion Network (ECN)

2016-04-05
2016-01-0734
The 4th Workshop of the Engine Combustion Network (ECN) was held September 5-6, 2015 in Kyoto, Japan. This manuscript presents a summary of the progress in experiments and modeling among ECN contributors leading to a better understanding of soot formation under the ECN “Spray A” configuration and some parametric variants. Relevant published and unpublished work from prior ECN workshops is reviewed. Experiments measuring soot particle size and morphology, soot volume fraction (fv), and transient soot mass have been conducted at various international institutions providing target data for improvements to computational models. Multiple modeling contributions using both the Reynolds Averaged Navier-Stokes (RANS) Equations approach and the Large-Eddy Simulation (LES) approach have been submitted. Among these, various chemical mechanisms, soot models, and turbulence-chemistry interaction (TCI) methodologies have been considered.
Journal Article

Applying Advanced CFD Analysis Tools to Study Differences between Start-of-Main and Start-of-Post Injection Flow, Temperature and Chemistry Fields Due to Combustion of Main-Injected Fuel

2015-09-06
2015-24-2436
This paper is part of a larger body of experimental and computational work devoted to studying the role of close-coupled post injections on soot reduction in a heavy-duty optical engine. It is a continuation of an earlier computational paper. The goals of the current work are to develop new CFD analysis tools and methods and apply them to gain a more in depth understanding of the different in-cylinder environments into which fuel from main- and post-injections are injected and to study how the in-cylinder flow, thermal and chemical fields are transformed between start of injection timings. The engine represented in this computational study is a single-cylinder, direct-injection, heavy-duty, low-swirl engine with optical components. It is based on the Cummins N14, has a cylindrical shaped piston bowl and an eight-hole injector that are both centered on the cylinder axis. The fuel used was n-heptane and the engine operating condition was light load at 1200 RPM.
Technical Paper

Measured and Predicted Soot Particle Emissions from Natural Gas Engines

2015-09-06
2015-24-2518
Due to the new challenge of meeting number-based regulations for particulate matter (PM), a numerical and experimental study has been conducted to better understand particulate formation in engines fuelled with compressed natural gas. The study has been conducted on a Heavy-Duty, Euro VI, 4-cylinder, spark ignited engine, with multipoint sequential phased injection and stoichiometric combustion. For the experimental measurements two different instruments were used: a condensation particle counter (CPC) and a fast-response particle size spectrometer (DMS) the latter able also to provide a particle size distribution of the measured particles in the range from 5 to 1000 nm. Experimental measurements in both stationary and transient conditions were carried out. The data using the World Harmonized Transient Cycle (WHTC) were useful to detect which operating conditions lead to high numbers of particles. Then a further transient test was used for a more detailed and deeper analysis.
Journal Article

Numerical Study of RCCI and HCCI Combustion Processes Using Gasoline, Diesel, iso-Butanol and DTBP Cetane Improver

2015-04-14
2015-01-0850
Reactivity Controlled Compression Ignition (RCCI) has been shown to be an attractive concept to achieve clean and high efficiency combustion. RCCI can be realized by applying two fuels with different reactivities, e.g., diesel and gasoline. This motivates the idea of using a single low reactivity fuel and direct injection (DI) of the same fuel blended with a small amount of cetane improver to achieve RCCI combustion. In the current study, numerical investigation was conducted to simulate RCCI and HCCI combustion and emissions with various fuels, including gasoline/diesel, iso-butanol/diesel and iso-butanol/iso-butanol+di-tert-butyl peroxide (DTBP) cetane improver. A reduced Primary Reference Fuel (PRF)-iso-butanol-DTBP mechanism was formulated and coupled with the KIVA computational fluid dynamic (CFD) code to predict the combustion and emissions of these fuels under different operating conditions in a heavy duty diesel engine.
Journal Article

Multi-Dimensional-Modeling-Based Development of a Novel 2-Zone Combustion Chamber Applied to Reactivity Controlled Compression Ignition Combustion

2015-04-14
2015-01-0840
A novel 2-zone combustion chamber concept (patent pending) was developed using multi-dimensional modeling. At minimum volume, an axial projection in the piston divides the volume into distinct zones joined by a communication channel. The projection provides a means to control the mixture formation and combustion phasing within each zone. The novel combustion system was applied to reactivity controlled compression ignition (RCCI) combustion in both light-duty and heavy-duty diesel engines. Results from the study of an 8.8 bar BMEP, 2600 RPM operating condition are presented for the light-duty engine. The results from the heavy-duty engine are at an 18.1 bar BMEP, 1200 RPM operating condition. The effect of several major design features were investigated including the volume split between the inner and outer combustion chamber volumes, the clearance (squish) height, and the top ring land (crevice) volume.
Journal Article

Characterization of Reactivity Controlled Compression Ignition (RCCI) Using Premixed Gasoline and Direct-Injected Gasoline with a Cetane Improver on a Multi-Cylinder Engine

2015-04-14
2015-01-0855
The focus of the present study was to characterize Reactivity Controlled Compression Ignition (RCCI) using a single-fuel approach of gasoline and gasoline mixed with a commercially available cetane improver on a multi-cylinder engine. RCCI was achieved by port-injecting a certification grade 96 research octane gasoline and direct-injecting the same gasoline mixed with various levels of a cetane improver, 2-ethylhexyl nitrate (EHN). The EHN volume percentages investigated in the direct-injected fuel were 10, 5, and 2.5%. The combustion phasing controllability and emissions of the different fueling combinations were characterized at 2300 rpm and 4.2 bar brake mean effective pressure over a variety of parametric investigations including direct injection timing, premixed gasoline percentage, and intake temperature. Comparisons were made to gasoline/diesel RCCI operation on the same engine platform at nominally the same operating condition.
Journal Article

Load Limit Extension in Pre-Mixed Compression Ignition Using a 2-Zone Combustion System

2015-04-14
2015-01-0860
A novel 2-zone combustion system was examined at medium load operation consistent with loads in the light duty vehicle drive cycle (7.6 bar BMEP and 2600 rev/min). Pressure rise rate and noise can limit the part of the engine map where pre-mixed combustion strategies such as HCCI or RCCI can be used. The present 2-zone pistons have an axial projection that divides the near TDC volume into two regions (inner and outer) joined by a narrow communication channel defined by the squish height. Dividing the near TDC volume provides a means to prepare two fuel-air mixtures with different ignition characteristics. Depending on the fuel injection timing, the reactivity of the inner or outer volume can be raised to provide an ignition source for the fuel-air mixture in the other, less reactive volume. Multi-dimensional CFD modeling was used to design the 2-zone piston geometry examined in this study.
Journal Article

The Effect of Operating Parameters on Soot Emissions in GDI Engines

2015-04-14
2015-01-1071
Due to the upcoming regulations for particulate matter (PM) emissions from GDI engines, a computational fluid dynamic (CFD) modeling study to predict soot emissions (both mass and solid particle number) from gasoline direct injection (GDI) engines was undertaken to provide insights on how and why soot emissions are formed from GDI engines. In this way, better methods may be developed to control or reduce PM emissions from GDI engines. In this paper, the influence of engine operating parameters was examined for a side-mounted fuel injector configuration in a direct-injection spark-ignition (DISI) engine. The present models are able to reasonably predict the influences of the variables of interest compared to available experimental data or literature. For a late injection strategy, effects of the fuel composition, and spray cone angle were investigated with a single-hole injector.
Technical Paper

Principal Component Analysis and Study of Port-Induced Swirl Structures in a Light-Duty Optical Diesel Engine

2015-04-14
2015-01-1696
In this work computational and experimental approaches are combined to characterize in-cylinder flow structures and local flow field properties during operation of the Sandia 1.9L light-duty optical Diesel engine. A full computational model of the single-cylinder research engine was used that considers the complete intake and exhaust runners and plenums, as well as the adjustable throttling devices used in the experiments to obtain different swirl ratios. The in-cylinder flow predictions were validated against an extensive set of planar PIV measurements at different vertical locations in the combustion chamber for different swirl ratio configurations. Principal Component Analysis was used to characterize precession, tilting and eccentricity, and regional averages of the in-cylinder turbulence properties in the squish region and the piston bowl.
Technical Paper

Comparison of Variable Valve Actuation, Cylinder Deactivation and Injection Strategies for Low-Load RCCI Operation of a Light Duty Engine

2015-04-14
2015-01-0843
While Low Temperature Combustion (LTC) strategies such as Reactivity Controlled Compression Ignition (RCCI) exhibit high thermal efficiency and produce low NOx and soot emissions, low load operation is still a significant challenge due to high unburnt hydrocarbon (UHC) and carbon monoxide (CO) emissions, which occur as a result of poor combustion efficiencies at these operating points. Furthermore, the exhaust gas temperatures are insufficient to light-off the Diesel Oxidation Catalyst (DOC), thereby resulting in poor UHC and CO conversion efficiencies by the aftertreatment system. To achieve exhaust gas temperature values sufficient for DOC light-off, combustion can be appropriately phased by changing the ratio of gasoline to diesel in the cylinder, or by burning additional fuel injected during the expansion stroke through post-injection.
Technical Paper

CFD Study of Soot Reduction Mechanisms of Post-Injection in Spray Combustion

2015-04-14
2015-01-0794
The application of close-coupled post injections in diesel engines has been proven to be an effective in-cylinder strategy for soot reduction, without much fuel efficiency penalty. But due to the complexity of in-cylinder combustion, the soot reduction mechanism of post-injections is difficult to explain. Accordingly, a simulation study using a three dimensional computational fluid dynamics (CFD) model, coupled with the SpeedChem chemistry solver and a semi-detailed soot model, was carried out to investigate post-injection in a constant volume combustion chamber, which is more simple and controllable with respect to the boundary conditions than an engine. A 2-D axisymmetric mesh of radius 2 cm and height 5 cm was used to model the spray. Post-injection durations and initial oxygen concentrations were swept to study the efficacy of post-injection under different combustion conditions.
X