Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Study of the Influence of the Injection System in a Multi-Dimensional Spray Simulation

2005-09-11
2005-24-088
The introduction of the high-pressure fully electronic-controlled injection systems has opened a number of new possibilities to optimize diesel engine performance and to reduce pollutant emissions. However greater research efforts are required to meet future European emission legislation. The control of the combustion process, which determines to a large extent the amount of pollutant emissions, requires primarily an understanding of its physics and chemistry as well as the capability to modify one or more of the interdependent process parameters in a given direction. Since many parameters have to be considered, a combined experimental-numerical approach is required.
Technical Paper

Direct Injection for Future SI-Engines - Stand Alone Combustion Layout or Integrated Part of Multi-Function Fuel/Air Management Approach?

2003-03-03
2003-01-0540
In the future generation of low consumption SI-engine layouts, it has become necessary to reduce costs as well as the complexity level and, increase the system reliability by the latter. To avoid driving the GDI-system in the critical, very lean stratified operation mode without losing the fuel consumption benefit, a solution is suggested, which combines a fully variable valve control system with a low level, robust GDI combustion layout. The first part of the present paper presents the latest development in the field of high precision multi-hole GDI injector spray nozzles. The basic aspects of mixture preparation with multi-hole gasoline atomizers are highlighted and their spray behavior compared to that of the current swirl atomizer nozzle. The second part of the paper presents primary optimization of a largely homogeneous GDI combustion layout combined with a fully variable valve timing control system including complete cylinder de-activation.
Technical Paper

Study of the Benefits and Drawbacks of a Substantial Increase of Rail-Pressure in GDI-Injector Assemblies

2002-03-04
2002-01-1132
In the present paper are examined the consequences of a substantial rise in the injection pressure for Gasoline Direct Injection (GDI) injector assemblies. The paper presents a comparative study of the spray behavior of two different injector nozzle layouts submitted to current 10 Mpa rail-pressure as well as to a 30 Mpa injection pressure. To evaluate the differences in the fundamental physical spray parameters are used several specially developed optical visualization techniques, which enable phase-Doppler, PIV, Laser-sheet and high-speed recordings of dense high pressure fuel sprays. A recently developed injector actuator and the necessary modifications to existing high-pressure pumps to reach a 30 MPa pressure level in the fuel system are presented. The change in basic spray parameters (time-resolved droplet distribution and spray momentum) caused by the rail-pressure rise is examined.
Technical Paper

Experimental Validation of a GDI Spray Model

2002-03-04
2002-01-1137
A computational model and an experimental analysis have been performed to study the atomisation processes of hollow cone fuel sprays from a high pressure swirl injector for gasoline direct injection (GDI) engines. The objective has been to obtain reliable simulations and better understood structure and evolution of the spray and its interaction with air the flow field. The 3D computations are based on the KIVA 3 code in which basic spray sub models have been modified to simulate break-up phenomena and evaporation process. Spray characteristics have been measured using a system, able to gather and to process spray images, including a CCD camera, a frame grabber and a pulsed sheet obtained by the second harmonic of Nd-YAG laser (wavelength 532 nm, width 12 ns, thickness 80 μm). The readout system has been triggered by a TTL signal synchronized with the start of injection. A digital image processing software has been used to analyse the collected pictures.
Technical Paper

Enhanced Mixture Preparation Approach for Lean Stratified SI-Combustion by a Combined Use of GDI and Electronically Controlled Valve-Timing

2000-03-06
2000-01-0532
The first part of the paper gives an overview of the current status in fuel consumption gain of the GDI-vehicles previously launched on the European market. In order to increase the potential for a further gain in specific fuel consumption the behaviour of 3 different combustion chamber layouts are studied. The chamber layouts are aimed to adapt as well as possible to the particular requirements for application to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application that shows the different steps of a structured optimisation methodology for a 1.2 litre, small bore 4-cylinder engine. The applications of an air-motion-guided and a wall-guided layout with a mechanically actuated valve train to the same combustion chamber are discussed. The potential of the air-motion-guided concept is enhanced through the introduction of an electromagnetic fully variable valve train.
Technical Paper

Experimental and Numerical Approach to Injection and Ignition Optimization of Lean GDI-Combustion Behavior

1999-03-01
1999-01-0173
The first part of the paper gives an overview of the current development status of the GDI system layout for the middle displacement engine, typically 2 liter, using the stoichiometric or weak lean concept. Hereafter are discussed the particular requirements for the transition to a small displacement/small bore engine working in stratified lean conditions. The paper continues with a description of the application of the different steps of the optimization methodology for a 1.2 liter, small bore 4 cylinder engine from its original base line MPI version towards the lean stratified operation mode. The latest changes in the combustion model, used in the numerical simulation software applied to the combustion chamber design, are discussed and comparison made with the previous model. The redesign of the combustion chamber geometry, the proper choice of injector atomizer type and location and the use of two-stage injection and multi-spark strategies are discussed in detail.
Technical Paper

Mass Transfer Improvements in Catalytic Converter Channels: An Hybrid BGK-Finite Volume Numerical Simulation Method

1997-10-01
972907
For compliance with future LEV/ULEV emission standards in United States and Euro 2000/Euro 2005 standards in European Community, catalytic converter performance has to be remarkably improved. The development of simulation codes allows to investigate a high range of possible exhaust system configurations and engine operating parameters. In the present study an hybrid Lattice BGK-finite volume technique will be described, able to determine the mass transfer rates of the chemical species to the catalyzed wall of the monolith channels. The BGK code solves the fluid motion governing equations in a reduced form obtained by discretizing the continuum in a fixed number of particles. Each of them will be moved by a set of discrete velocities and collide with the neighbour particles according to a fixed pattern of particle-interaction.
Technical Paper

A Simulation Model for a High Pressure Injection Systems

1997-05-01
971595
Pollutant emissions from D.I. Diesel engines strongly depend on injection system characteristics and mainly on injection pressure and timing. In the latest years some solutions have been proposed based on very high fuel pressure values (up to 150 MPa). Among them, the so called “Common rail” system configuration, being able to electronically control needle lift and injection pressure, seems to be particularly promising. Much experimental and theoretical work has been done to improve system performance for automotive applications. With the aim of investigating the influence of some details of geometrical configuration on the injector operating mode, a mathematical model able to describe the pressure-time history in any section of the delivery pipe and the fuel injection rate through the nozzle has been developed, based on a semi-implicit finite volumes approach. The computed results have been compared with experimental data provided by the Institut Français du Pétrole.
Technical Paper

Direct Fuel Injection - A Study of Injector Requirements for Different Mixture Preparation Concepts

1997-02-24
970628
The first part of the paper outlines the main potential advantages of the direct fuel injection concept and describes the overall layout of a system in which the keystones are a piston rotary fuel delivery pump with integrated pressure regulation and electromechanical fast responding fuel injectors. Three different nozzle designs are discussed, a divergent pintle solid cone, a pintle hollow cone swirl layout and a closed cap multijet design. In the second part of the paper the used experimental high pressure dynamic test equipment is discussed. Then the results obtained by the use of phase illuminated visualisation techniques and phase Doppler analysis as well as by a 3D CFD approach are presented. The paper concludes by relating the spray patterns and the associated droplet penetration velocities, produced by the different nozzle types, to the combustion chamber layout and to the possible manufacturing precision requirements for each nozzle type.
X