Refine Your Search

Topic

Search Results

Standard

Spark Arrester Test Procedure for Medium Size Engines

2020-08-21
WIP
J350
This SAE Recommended Practice establishes equipment and procedures for testing spark arresters used on medium-size, single-position internal combustion engines, normally used in transportable, stationary, and vehicular applications, such as highway trucks, agricultural tractors, industrial tractors, other mobile equipment, and motorcycles. This document provides two methods of testing (laboratory testing and engine testing) which may be used to evaluate a spark arrester. It also includes special requirements for screen type devices and an endurance test procedure for screen type spark arresters.
Standard

Spark Arrester Test Procedure for Large Size Engines

2020-08-21
WIP
J342
This SAE Recommended Practice establishes equipment and procedures for the evaluation of the effectiveness and other performance characteristics of spark arresters or turbochargers used on the exhaust system of large engines normally used in a railroad locomotive, stationary power plant, and other similar applications. This document does not cover applications requiring flame arresting, exhaust gas cooling, or isolation from explosive gases. Two test methods are presented; a laboratory test using ambient air (cold test) and an engine test using exhaust gases (hot test). The hot test is preferred.
Standard

Flywheel Spin Test Procedure

2013-05-03
CURRENT
J1240_201305
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of spark ignition and diesel type. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 size flywheel housings.
Standard

Spark Arrester Test Procedure for Large Size Engines

2013-03-26
CURRENT
J342_201303
This SAE Recommended Practice establishes equipment and procedures for the evaluation of the effectiveness and other performance characteristics of spark arresters or turbochargers used on the exhaust system of large engines normally used in a railroad locomotive, stationary power plant, and other similar applications. This document does not cover applications requiring flame arresting, exhaust gas cooling, or isolation from explosive gases. Two test methods are presented: a laboratory test using ambient air (cold test) and an engine test using exhaust gases (hot test). The hot test is preferred. Arresters tested by the provisions of this document can be expected to perform as tested when tilted no more than 45 degrees from their normal position. Test results from a spark arrester or turbocharger evaluated by the hot test can be applied to different engines of similar design, provided the data shows it to be effective in the applicable flow ranges.
Standard

Maximum Allowable Rotational Speed for Internal Combustion Engine Flywheels

2012-10-23
CURRENT
J1456_201210
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of the spark ignition and diesel type equipped with a governor or speed limiting device. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 flywheel housings. This document applies to methods used to determine the rotational speed capability of flywheels for stresses imposed by centrifugal forces only.
Standard

Industrial Power Take-Offs With Driving Ring-Type Overcenter Clutches

2012-10-23
CURRENT
J621_201210
This SAE Standard defines installation dimensions of industrial power take-offs with driving ring-type overcenter clutches. Table 1 and Figure 1 give dimensions for power take-offs. For dimensions and tolerances of power take-off flanges and flywheels, see SAE J617 and J620, respectively.
Standard

Flywheels for Industrial Engines Used With Industrial Power Take-Offs Equipped With Driving-Ring Type Overcenter Clutches and Engine-Mounted Marine Gears and Single Bearing Engine-Mounted Power Generators

2012-10-23
CURRENT
J620_201210
This SAE Standard defines flywheel configurations for industry standardization, interchangeability, and compatibility. Table 1 and Figure 1 give the dimensions for the flywheels. For dimensions of industrial power take-offs with driving-ring type overcenter clutches, see SAE J621. For flywheel dimensions for engine-mounted torque converters without front disconnect clutch, see SAE J927.
Standard

Engine Flywheel Housings with Sealed Flanges

2012-10-23
CURRENT
J1172_201210
This SAE Recommended Practice defines flywheel housing flange configurations for applications requiring "O" ring sealing of the flange pilot bore. Table 1 and Figure 1 show dimensions that are different from those in SAE J617. All other dimensions and tolerances of SAE J617 apply.
Standard

Overcenter Clutch Spin Test Procedure

2012-10-23
CURRENT
J1079_201210
This SAE Recommended Practice applies to driving ring type overcenter clutches such as are used in industrial power takeoffs.
Standard

Flywheel Spin Test Procedure

2012-10-04
HISTORICAL
J1240_201210
This SAE Recommended Practice applies to flywheels and flywheel-starter ring gear assemblies used with internal combustion engines of spark ignition and diesel type. Engine sizes are those capable of using SAE No. 6 through SAE No. 00 size flywheel housings.
Standard

Procedure for Measuring Bore and Face Runout of Flywheels, Flywheel Housings, and Flywheel Housing Adapters

2012-06-01
CURRENT
J1033_201206
This SAE Recommended Practice applies to any internal combustion engine which can utilize SAE No. 6 thru SAE No. 00 size flywheel housing. It provides instructions for correcting flywheel housing bore runout readings which are influenced by crankshaft bearing clearance. Limits for bore and face runout are specified in the various SAE Standards and Recommended Practices covering flywheels and flywheel housings.
Standard

Housing Internal Dimensions for Single- and Two-Plate Spring-Loaded Clutches

2012-05-31
CURRENT
J373_201205
This SAE Recommended Practice defines the minimum internal dimensions for clutch housings to provide adequate clearance for single- and two-plate spring-loaded clutches. (See Figure 1.) Consult SAE J617 for housing flange dimensions. Consult SAE J618 and J619 for spring-loaded clutch flywheel dimensions F and G and other dimensional data. Table 1 provides housing minimum internal dimensions for single- and two-plate spring-loaded clutches.
Standard

Flywheels for Two-Plate Spring-Loaded Clutches

2012-05-31
CURRENT
J619_201205
This SAE Recommended Practice defines flywheel configuration to promote standardization of flywheels for dry spring-loaded clutches. Clutches to fit flywheels with configurations per this document may not be commercially available. Availability should be ascertained prior to flywheel design Figure 1 and Table 1A.
Standard

Flywheels for Single-Plate Spring-Loaded Clutches

2012-05-31
CURRENT
J618_201205
This SAE Recommended Practice applies to flywheels for dry spring-loaded clutches used on internal combustion engines. Figure 1 and Tables 1, 2, and 3 report information currently used in the industry. Clutches requiring other dimensions are also manufactured. Dimensions given are primarily for single-plate clutches. Flywheels for two plate clutches have the same dimensions if an adaptor for the intermediate plate and second driven disc is supplied with the clutch. If instead the flywheel is to be extended to adapt the intermediate plate and second driven member, consult the clutch manufacturer for the required J dimension and drive arrangements for the intermediate plate. See SAE J1806 for flywheels for size 14 and 15.5 two plate pull-type clutches.
Standard

Crankcase Emission Control Test Code

2012-01-23
CURRENT
J900_201201
The purpose of this SAE STandard is to provide standard test procedures for crankcase emission control systems and/or devices. The procedures included are for determining: a. The flow rate of the blowby of an engine; b. The flow rates through the crankcase emission control system inlet and outlet. This code is written to cover crankcase emission control systems which are designed to reduce the emission of engine blowby gases to the atmosphere. The code includes the following sections: 3. Definitions and Terminology; 4. Test Equipment; 5. Test Procedures; 6. Information and Data to be Recorded; 7. Data Analysis; 8. Presentation of Information and Data.
Standard

SAE Design Guideline: Metal Belt Drive Continuously Variable Ratio (CVT) Automatic Transmissions

2011-09-12
CURRENT
J2525_201109
The purpose of this guideline is to provide the essential design considerations for the metal “V” belt variator used in continuously variable transmissions. Information from SAE papers, transmission manufacturers, and component manufacturers is provided to aid engineers in understanding the function and design methodology of the major components within the variator system. Recommended design practices are given based on current practices.
Standard

Engine Testing with Low-Temperature Charge Air-cooler Systems in a Dynamometer Test Cell

2011-09-06
CURRENT
J1937_201109
The methods presented in this SAE Recommended Practice apply to the controlled testing of low-temperature charge, air-cooled, heavy-duty diesel engines. This document encompasses the following main sections: a Definitions of pertinent parameters b Vehicle testing to determine typical values for these parameters c Description of the setup and operation of the test cell system d Validation testing of the test cell system While not covered in this document, computer modeling of the vehicle engine cooler system is recognized as a valid tool to determine cooler system performance and could be utilized to supplement the testing described. However, adequate in-vehicle testing should be performed to validate the model before it is used for the purposes outlined. The procedure makes references to test cycles that are prescribed by the United States Environmental Protection Agency (US EPA) and are contained in the Code of Federal Regulations.
Standard

Continuously Variable Transmission Test Code For Passenger Cars

2011-09-06
CURRENT
J1618_201109
To measure the performance characteristics of Continuously Variable Transmissions (CVT). It outlines dynamometer tests that cover the range of operation and provides a method of presenting the test data. This procedure must be followed with similar test facilities so that results obtained from different laboratories are comparable.
Standard

Impact of Alternative Fuels on Engine Test and Reporting Procedures

2011-09-06
CURRENT
J1515_201109
The guidelines in this SAE Information Report are directed at laboratory engine dynamometer test procedures with alternative fuels, and they are applicable to four-stroke and two-stroke cycle spark ignition (SI) and diesel (CI) engines (naturally aspirated or pressure charged, with or without charge air cooling). A brief overview of investigations with some alternative fuels can be found in SAE J1297. Other SAE documents covering vehicle, engine, or component testing may be affected by use of alternative fuels. Some of the documents that may be affected can be found in Appendix A. Guidelines are provided for the engine power test code (SAE J1349) in Appendix D. The principles of these guidelines may apply to other procedures and codes, but the effects have not been investigated. The report is organized into four technical sections, each dealing with an important aspect of testing or reporting of results when using alternative fuels.
X