Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Injury Risk Curves for the Human Cervical Spine from Inferior-to-Superior Loading

2018-11-12
2018-22-0006
Cervical spine injuries can occur in military scenarios from events such as underbody blast events. Such scenarios impart inferior-to-superior loads to the spine. The objective of this study is to develop human injury risk curves (IRCs) under this loading mode using Post Mortem Human Surrogates (PMHS). Twenty-five PMHS head-neck complexes were obtained, screened for pre-existing trauma, bone densities were determined, pre-tests radiological images were taken, fixed in polymethylmethacrylate at the T2-T3 level, a load cell was attached to the distal end of the preparation, positioned end on custom vertical accelerator device based on the military-seating posture, donned with a combat helmet, and impacted at the base. Posttest images were obtained, and gross dissection was done to confirm injuries to all specimens. Axial and resultant forces at the cervico-thoracic joint was used to develop the IRCs using survival analysis.
Technical Paper

Human Foot-Ankle Injuries and Associated Risk Curves from Under Body Blast Loading Conditions

2017-11-13
2017-22-0006
Under body blast (UBB) loading to military transport vehicles is known to cause foot-ankle fractures to occupants due to energy transfer from the vehicle floor to the feet of the soldier. The soldier posture, the proximity of the event with respect to the soldier, the personal protective equipment (PPE) and age/sex of the soldier are some variables that can influence injury severity and injury patterns. Recently conducted experiments to simulate the loading environment to the human foot/ankle in UBB events (~5ms rise time) with variables such as posture, age and PPE were used for the current study. The objective of this study was to determine statistically if these variables affected the primary injury predictors, and develop injury risk curves. Fifty below-knee post mortem human surrogate (PMHS) legs were used for statistical analysis. Injuries to specimens involved isolated and multiple fractures of varying severity.
X