Refine Your Search

Topic

Search Results

Technical Paper

Evaluation of swirl ratio effects on the flow fields using Particle Image Velocimetry and Flame image Velocimetry in a small-bore optical compression-ignition engine

2023-09-29
2023-32-0061
This study applies high-speed particle image velocimetry (HS-PIV) and flame image velocimetry (HS-FIV) to show flow fields under the effect of varied swirl ratios in a small-bore optical compression-ignition engine. The base swirl ratio and maximum swirl ratio conditions were applied to investigate structures, magnitude and turbulence distribution of the in-cylinder flow as well as the flow within the flame. For each swirl ratio, 100 individual cycles were measured for PIV analysis at motoring conditions and then another 100 cycles for FIV analysis at firing conditions. The derived flow fields were ensemble averaged to show flow structure evolution while the spatial filtering method was applied to extract high-frequency flow component for the analysis of turbulence distributions. The results showed that the intake air flow generates undefined, chaotic flow fields, which are followed by a gradual production of an asymmetric swirl flow.
Technical Paper

A Numerical Investigation of Mixture Formation and Combustion Characteristics of a Hydrogen-Diesel Dual Direct Injection Engine

2021-04-06
2021-01-0526
A hydrogen-diesel dual direct injection (H2DDI) combustion strategy in a compression-ignition engine is investigated numerically, reproducing the configuration of previous experimental investigations. These experiments demonstrated the potential of up to 50% diesel substitution by hydrogen while maintaining high engine efficiency; nevertheless, the emission of NOx increased compared with diesel operation and was strongly dependent on the hydrogen injection timing. This implies the efficiency and NOx emission are closely associated with hydrogen charge stratification; however, the underlying mechanisms are not fully understood. Aiming to highlight the hydrogen injection-timing influence on hydrogen/air mixture stratification and engine performance, the present study numerically investigates the mixture formation and combustion process in the H2DDI engine concept using Converge, a three-dimensional fluid dynamics simulation code.
Technical Paper

Mechanisms of NOx Production and Heat Loss in a Dual-Fuel Hydrogen Compression Ignition Engine

2021-04-06
2021-01-0527
The combustion process of a homogeneous hydrogen charge in a small-bore compression ignition engine with diesel-pilot ignition was simulated using the CONVERGE computational fluid dynamics code. Analysis of the simulation results aimed to understand the processes leading to NOx production and heat loss in this combustion strategy, and their dependence on the hydrogen fuel energy fraction. Previous experimental results demonstrated promising performance, but this comes with a penalty in increased NOx emissions and potentially higher heat losses. The present study aims to enhance understanding of the mechanisms governing these phenomena. The simulated engine was initialised with a lean homogeneous hydrogen-air mixture at BDC and n-dodecane was injected as a diesel surrogate fuel near TDC. The simulations were validated based on experimental results for up to 50% hydrogen energy fraction, followed by an exploratory study with variation of the energy fraction from 0% to 90%.
Journal Article

Optimisation of Image Processing Parameters for Flame Image Velocimetry (FIV) Measurement in a Single-Cylinder, Small-Bore Optical Diesel Engine

2019-04-02
2019-01-0719
High-speed soot luminosity movies are widely used to visualise flame development in optical diesel engines thanks to its simple setup and relatively low cost. Recent studies demonstrated the high-speed soot luminosity movies are not only effective in showing the overall distribution and temporal evolution of sooting flames but also flow fields within the flame through the application of combustion (or flame) image velocimetry. The present study aims to improve this imaging technique by systematically evaluating key image processing parameters based on high-speed soot luminosity movies obtained from a single-cylinder, small-bore optical diesel engine. The raw soot luminosity movies are processed using PIVlab - a Matlab-based open-source code widely used for particle image velocimetry (PIV) applications.
Technical Paper

In-Cylinder Soot Reduction Using Microwave Generated Plasma in an Optically Accessible Small-Bore Diesel Engine

2018-04-03
2018-01-0246
The present study explores the effect of in-cylinder generated non-thermal plasma on hydroxyl and soot development. Plasma was generated using a newly developed Microwave Discharge Igniter (MDI), a device which operates based on the principle of microwave resonation and has the potential to accentuate the formation of active radical pools as well as suppress soot formation while stimulating soot oxidation. Three diagnostic techniques were employed in a single-cylinder small-bore optical diesel engine, including chemiluminescence imaging of electronically excited hydroxyl (OH*), planar laser induced fluorescence imaging of OH (OH-PLIF) and planar laser induced incandescence (PLII) imaging of soot. While investigating the behaviour of MDI discharge under engine motoring conditions, it was found that plasma-induced OH* signal size and intensity increased with higher in-cylinder pressures albeit with shorter lifetime and lower breakdown consistency.
Technical Paper

Influence of Engine Speed on Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine

2017-03-28
2017-01-0742
The present study aims to evaluate the effects of engine speed on gasoline compression ignition (GCI) combustion implementing double injection strategies. The double injection comprises of near-BDC first injection for the formation of a premixed charge and near-TDC second injection for the combustion phasing control. The engine performance and emissions testing of GCI combustion has been conducted in a single-cylinder light-duty diesel engine equipped with a common-rail injection system and fuelled with a conventional gasoline with 91 RON. The double injection strategy was investigated for various engine speeds ranging 1200~2000 rpm and the second injection timings between 12°CA bTDC and 3°CA aTDC.
Technical Paper

A Comparison between In-Flame and Exhaust Soot Nanostructures in a Light-Duty Diesel Engine

2017-03-28
2017-01-0710
Soot particles emitted from modern diesel engines, despite significantly lower total mass, show higher reactivity and toxicity than black-smoking old engines, which cause serious health and environmental issues. Soot nanostructure, i.e. the internal structure of soot particles composed of nanoscale carbon fringes, can provide useful information to the investigation of the particle reactivity and its oxidation status. This study presents the nanostructure details of soot particles sampled directly from diesel flames in a working diesel engine as well as from exhaust gases to compare the internal structure of soot particles in the high formation stage and after in-cylinder oxidation. Thermophoretic soot sampling was conducted using an in-house-designed probe with a lacy transmission electron microscope (TEM) grid stored at the tip.
Technical Paper

Double Injection Strategies for Ethanol-Fuelled Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine

2016-10-17
2016-01-2303
Ethanol has been selected as a fuel for gasoline compression ignition (GCI) engines realising partially premixed charge combustion, considering its higher resistance to auto-ignition, higher evaporative cooling and oxygen contents than widely used gasoline, all of which could further improve already high efficiency and low smoke/NOx emissions of GCI engines. The in-cylinder phenomena and engine-out emissions were measured in a single-cylinder automotive-size common-rail diesel engine with a special emphasis on double injection strategies implementing early first injection near BDC and late second injection near TDC.
Journal Article

Nanostructure Analysis of In-flame Soot Particles under the Influence of Jet-Jet Interactions in a Light-Duty Diesel Engine

2015-09-06
2015-24-2444
Some soot particles emitted from common-rail diesel engines are so small that can penetrate deep into the human pulmonary system, causing serious health issues. The analysis of nano-scale internal structure of these soot particles sampled from the engine tailpipe has provided useful information about their reactivity and toxicity. However, the variations of carbon fringe structures during complex soot formation/oxidation processes occurring inside the engine cylinder are not fully understood. To fill this gap, this paper presents experimental methods for direct sampling and nanostructure analysis of in-flame soot particles in a working diesel engine. The soot particles are collected onto a lacey carbon-coated grid and then imaged in a high-resolution transmission electron microscope (HR-TEM). The HR-TEM images are post-processed using a Matlab-based code to obtain key nanostructure parameters such as carbon fringe length, fringe-to-fringe separation distance, and fringe tortuosity.
Journal Article

A Comparative Analysis on Engine Performance of a Conventional Diesel Fuel and 10% Biodiesel Blends Produced from Coconut Oils

2015-09-06
2015-24-2489
This paper presents engine performance and emissions of coconut oil-derived 10% biodiesel blends in petroleum diesel demonstrating simultaneous reduction of smoke and NOx emissions and increased brake power. The experiments were performed in a single-cylinder version of a light-duty diesel engine for three different fuels including a conventional diesel fuel and two B10 fuels of chemical-catalyst-based methyl-ester biodiesel (B10mc) and biological-catalyst-based ethyl-ester biodiesel (B10eb). The engine tests were conducted at fixed speed of 2000 rpm and injection pressure of 130 MPa. In addition to the fuel variation, the injection timing and rate of exhaust gas recirculation (EGR) were also varied because they impact the combustion and thus the efficiency and emissions significantly.
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Technical Paper

A Numerical Study of the Influence of Different Operating Conditions on the Combustion Development in an Automotive-Size Diesel Engine

2015-09-01
2015-01-1852
In this paper, numerical simulations of an automotive-size optical diesel engine have been conducted employing the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model and a reduced n-heptane chemical mechanism implemented in OpenFOAM. The current paper builds on a previous work where the model has been validated for the same engine using optical diagnostic data. The present study investigates numerically the influence of different operating conditions - relevant for modern diesel engines - on the mixture formation development under non-reactive conditions as well as low- and high-temperature ignition behaviour and flame evolution in the presence of strong jet-wall interactions typically encountered in automotive-size diesel engines. Also, emissions of CO and unburned hydrocarbons (UHC) are considered.
Technical Paper

High-Speed Imaging of Soot Luminosity and Spectral Analysis of In-Cylinder Pressure Trace during Diesel Knock

2014-04-01
2014-01-1259
The present study focuses on the observation of knock phenomena in a small-bore optical diesel engine. Current understanding is that a drastic increase of pressure during the premixed burn phase of the diesel combustion causes gas cavity resonances, which in turn induce a high frequency pressure ringing. The frequency and severity of this ringing can be easily measured by using a pressure transducer. However, visual information of flames under knocking conditions is limited especially for a small-bore diesel engine. To fill this gap, high-speed imaging of soot luminosity is performed in conjunction with in-cylinder pressure measurement during knocking cycles in an automotive-size optical diesel engine. From the experiments, flames were observed to oscillate against the direction of the swirl flow when the pressure ringing occurred.
Journal Article

Size Distribution and Structure of Wall-Deposited Soot Particles in an Automotive-Size Diesel Engine

2013-10-14
2013-01-2534
Wall-deposition of soot particles occurs during the cylinder liner wall/flame interaction, which can potentially deteriorate engine oil quality and alter the heat loss rate in a diesel engine. These issues motivate a detailed study on structure and size of the wall-deposited soot particles. A morphological difference between the wall-deposited soot and in-flame soot particles is another focus of this study. We performed thermophoretic soot sampling in the cylinder liner wall using an in-liner-type sampler. Obtained soot particles were imaged by a transmission electron microscope and post-processed to acquire the number of particles, projection area on the sampling grid, and size distribution. The same set of data was also obtained for soot particles within the diesel flame using a probe-type sampler.
Journal Article

Effect of Injection Pressure on Transient Behaviour of Wall-Interacting Jet Flame Base in an Automotive-Size Diesel Engine

2013-10-14
2013-01-2536
Influence of the injection pressure on the temporal evolution of lifted jet flame base upon the bowl wall impingement has been studied in a small-bore optical diesel engine. Previous studies suggest that the jet-wall interaction causes re-entrainment of combustion products into the incoming jet, which shortens the lift-off length during the injection and thereby increasing downstream soot. After the end of injection, the flame base slowly moves downstream as the diminishing jet momentum results in reduced re-entrainment. How the injection pressure impacts this transient behaviour of the flame base is a main focus of the present study. Common-rail pressure was varied from 70 to 160 MPa at a fixed injection mass (10 mg per hole) and timing (7°CA bTDC).
Journal Article

In-Flame Soot Sampling and Particle Analysis in a Diesel Engine

2013-04-08
2013-01-0912
In-flame soot sampling based on the thermophoresis of particles and subsequent transmission electron microscope (TEM) imaging has been conducted in a diesel engine to study size, shape and structure of soot particles within the reacting diesel jet. A direct TEM sampling is pursued, as opposed to exhaust sampling, to gain fundamental insight about the structure of soot during key formation and oxidation stages. The size and shape of soot particles aggregate structure with stretched chains of spherical-like primary particles is currently an unknown for engine soot modelling approaches. However, the in-flame sampling of soot particles in the engine poses significant challenges in order to extract meaningful data. In this paper, the engine modification to address the challenges of high-pressure sealing and avoiding interference with moving valves and piston are discussed in detail.
Technical Paper

Uncertainty in Sampling and TEM Analysis of Soot Particles in Diesel Spray Flame

2013-04-08
2013-01-0908
For better understanding of soot formation and oxidation processes applicable to diesel engines, the size, morphology, and nanostructure of soot particles directly sampled in a diesel spray flame generated in a constant-volume combustion chamber have been investigated using Transmission Electron Microscopy (TEM). For this soot diagnostics, the effects of the sampling processes, TEM observation methodology and image processing methods on the uncertainty in the results have not been extensively discussed, mainly due to the complexity of the analysis.
Journal Article

Soot Volume Fraction and Morphology of Conventional, Fischer-Tropsch, Coal-Derived, and Surrogate Fuel at Diesel Conditions

2012-04-16
2012-01-0678
Future fuels will come from a variety of feed stocks and refinement processes. Understanding the fundamentals of combustion and pollutants formation of these fuels will help clear hurdles in developing flex-fuel combustors. To this end, we investigated the combustion, soot formation, and soot oxidation processes for various classes of fuels, each with distinct physical properties and molecular structures. The fuels considered include: conventional No. 2 diesel (D2), low-aromatics jet fuel (JC), world-average jet fuel (JW), Fischer-Tropsch synthetic fuel (JS), coal-derived fuel (JP), and a two-component surrogate fuel (SR). Fuel sprays were injected into high-temperature, high-pressure ambient conditions that were representative of a practical diesel engine. Simultaneous laser extinction measurement and planar laser-induced incandescence imaging were performed to derive the in-situ soot volume fraction.
Journal Article

Liquid Penetration of Diesel and Biodiesel Sprays at Late-Cycle Post-Injection Conditions

2010-04-12
2010-01-0610
The liquid and vapor-phase spray penetrations of #2 diesel and neat (100%) soybean-derived biodiesel have been studied at late expansion-cycle conditions in a constant-volume optical chamber. In modern diesel engines, late-cycle staged injections may be used to assist in the operation of exhaust stream aftertreatment devices. These late-cycle injections occur well after top-dead-center (TDC), when post-combustion temperatures are relatively high and densities are low. The behavior of diesel sprays under these conditions has not been well-established in the literature. In the current work, high-speed Mie-scatter and schlieren imaging are employed in an optically accessible chamber to characterize the transient and quasi-steady liquid penetration behavior of diesel sprays under conditions relevant for late-cycle post injections, with very low densities (1.2 - 3 kg/m 3 ) and moderately high temperatures (800 - 1400 K).
Journal Article

Effect of Fuel Volatility and Ignition Quality on Combustion and Soot Formation at Fixed Premixing Conditions

2009-11-02
2009-01-2643
This paper presents experimental results for two fuel-related topics in a diesel engine: (1) how fuel volatility affects the premixed burn and heat release rate, and (2) how ignition quality influences the soot formation. Fast evaporation of fuel may lead to more intense heat release if a higher percentage of the fuel is mixed with air to form a combustible mixture. However, if the evaporation of fuel is driven by mixing with high-temperature gases from the ambient, a high-volatility fuel will require less oxygen entrainment and mixing for complete vaporization and, consequently, may not have potential for significant heat release simply because it has vaporized. Fuel cetane number changes also cause uncertainty regarding soot formation because variable ignition delay will change levels of fuel-air mixing prior to combustion.
X