Refine Your Search

Topic

Search Results

Technical Paper

Vortex Development and Heat Release Enhancement in Diesel Spray Flame by Inversed-Delta Injection Rate Shaping Using TAIZAC Injector

2021-09-05
2021-24-0037
The enhancement of vortex development, fuel-air mixing and heat release in diesel spray flame by inversed-delta injection rate shaping, having been predicted via LES simulation with detailed chemical kinetics, is experimentally confirmed for the first time. Newly developed 3-injector TAIZAC (TAndem Injector Zapping ACtivation) injector realizing aggressive inversed-delta injection rate shaping was used for single-shot combustion experiments in a constant volume combustion vessel. Simultaneous high-speed (120,000fps) and high-resolution (1,280 x 704 pixels) laser schlieren and UV OH* chemiluminescence imaging combined with subsequent Flame Imaging Velocimetry (FIV) analysis was employed to elucidate the correlation between vortex development and enhanced heat release.
Technical Paper

A Numerical Investigation of Mixture Formation and Combustion Characteristics of a Hydrogen-Diesel Dual Direct Injection Engine

2021-04-06
2021-01-0526
A hydrogen-diesel dual direct injection (H2DDI) combustion strategy in a compression-ignition engine is investigated numerically, reproducing the configuration of previous experimental investigations. These experiments demonstrated the potential of up to 50% diesel substitution by hydrogen while maintaining high engine efficiency; nevertheless, the emission of NOx increased compared with diesel operation and was strongly dependent on the hydrogen injection timing. This implies the efficiency and NOx emission are closely associated with hydrogen charge stratification; however, the underlying mechanisms are not fully understood. Aiming to highlight the hydrogen injection-timing influence on hydrogen/air mixture stratification and engine performance, the present study numerically investigates the mixture formation and combustion process in the H2DDI engine concept using Converge, a three-dimensional fluid dynamics simulation code.
Technical Paper

Mechanisms of NOx Production and Heat Loss in a Dual-Fuel Hydrogen Compression Ignition Engine

2021-04-06
2021-01-0527
The combustion process of a homogeneous hydrogen charge in a small-bore compression ignition engine with diesel-pilot ignition was simulated using the CONVERGE computational fluid dynamics code. Analysis of the simulation results aimed to understand the processes leading to NOx production and heat loss in this combustion strategy, and their dependence on the hydrogen fuel energy fraction. Previous experimental results demonstrated promising performance, but this comes with a penalty in increased NOx emissions and potentially higher heat losses. The present study aims to enhance understanding of the mechanisms governing these phenomena. The simulated engine was initialised with a lean homogeneous hydrogen-air mixture at BDC and n-dodecane was injected as a diesel surrogate fuel near TDC. The simulations were validated based on experimental results for up to 50% hydrogen energy fraction, followed by an exploratory study with variation of the energy fraction from 0% to 90%.
Technical Paper

Triple Injection Strategies for Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Small-Bore Common-Rail Diesel Engine

2019-04-02
2019-01-1148
Implementing triple injection strategies in partially premixed charge-based gasoline compression ignition (GCI) engines has shown to achieve improved engine efficiency and reduced NOx and smoke emissions in many previous studies. While the impact of the triple injections on engine performance and engine-out emissions are well known, their role in controlling the mixture homogeneity and charge premixedness is currently poorly understood. The present study shows correspondence between the triple injection strategies and mixture homogeneity/premixedness through the experimental tests of second/third injection proportion and their timing variations with an aim to explain the observed GCI engine performance and emission trends. The experiments were conducted in a single cylinder, small-bore common-rail diesel engine fuelled with a commercial gasoline fuel of 95 research octane number (RON) and running at 2000 rpm and 830 kPa indicated mean effective pressure conditions.
Journal Article

Optimisation of Image Processing Parameters for Flame Image Velocimetry (FIV) Measurement in a Single-Cylinder, Small-Bore Optical Diesel Engine

2019-04-02
2019-01-0719
High-speed soot luminosity movies are widely used to visualise flame development in optical diesel engines thanks to its simple setup and relatively low cost. Recent studies demonstrated the high-speed soot luminosity movies are not only effective in showing the overall distribution and temporal evolution of sooting flames but also flow fields within the flame through the application of combustion (or flame) image velocimetry. The present study aims to improve this imaging technique by systematically evaluating key image processing parameters based on high-speed soot luminosity movies obtained from a single-cylinder, small-bore optical diesel engine. The raw soot luminosity movies are processed using PIVlab - a Matlab-based open-source code widely used for particle image velocimetry (PIV) applications.
Journal Article

In-Flame Soot Sampling and Morphology Analysis in an Optical Spark-Ignition Direct-Injection (SIDI) Engine

2018-04-03
2018-01-1418
Stringent particulate emission regulations are applied to spark-ignition direct-injection (SIDI) engines, calling for a significant in-cylinder reduction of soot particles. To enhance fundamental knowledge of the soot formation and oxidation process inside the cylinder of the engine, a new in-flame particle sampling system has been developed and implemented in a working optical SIDI engine with a side-mounted, wall-guided injection system. Using the sampling probes installed on the piston top, the soot particles are directly sampled from the petrol flame for detailed analysis of particle size distribution, structure, and shape. At the probe tip, a transmission electron microscope (TEM) grid is stored for the soot collection via thermophoresis, which is imaged and post-processed for statistical analysis. Simultaneously, the flame development was recorded using two high-speed cameras to evidence the direct exposure of the sampling grids to the soot-laden diffusion flames and pool fires.
Technical Paper

In-Cylinder Soot Reduction Using Microwave Generated Plasma in an Optically Accessible Small-Bore Diesel Engine

2018-04-03
2018-01-0246
The present study explores the effect of in-cylinder generated non-thermal plasma on hydroxyl and soot development. Plasma was generated using a newly developed Microwave Discharge Igniter (MDI), a device which operates based on the principle of microwave resonation and has the potential to accentuate the formation of active radical pools as well as suppress soot formation while stimulating soot oxidation. Three diagnostic techniques were employed in a single-cylinder small-bore optical diesel engine, including chemiluminescence imaging of electronically excited hydroxyl (OH*), planar laser induced fluorescence imaging of OH (OH-PLIF) and planar laser induced incandescence (PLII) imaging of soot. While investigating the behaviour of MDI discharge under engine motoring conditions, it was found that plasma-induced OH* signal size and intensity increased with higher in-cylinder pressures albeit with shorter lifetime and lower breakdown consistency.
Technical Paper

Control of Microwave Plasma for Ignition Enhancement Using Microwave Discharge Igniter

2017-09-04
2017-24-0156
The Microwave Discharge Igniter (MDI) was developed to create microwave plasma for ignition improvement inside combustion engines. The MDI plasma discharge is generated using the principle of microwave resonance with microwave (MW) originating from a 2.45 GHz semiconductor oscillator; it is then further enhanced and sustained using MW from the same source. The flexibility in the control of semiconductors allows multiple variations of MW signal which in turn, affects the resonating plasma characteristics and subsequently the combustion performance. In this study, a wide range of different MW signal parameters that were used for the control of MDI were selected for a parametric study of the generated Microwave Plasma. Schlieren imaging of the MDI-ignited propane flame were carried out to assess the impact on combustion quality of different MW parameters combinations.
Technical Paper

Ignition of Propane-Air Mixtures by Miniaturized Resonating Microwave Flat-Panel Plasma Igniter

2017-09-04
2017-24-0150
Recent trend in gasoline-powered automobiles focuses heavily on reducing the CO2 emissions and improving fuel efficiency. Part of the solutions involve changes in combustion chamber geometry to allow for higher turbulence, higher compression ratio which can greatly improve efficiencies. However, the changes are limited by the ignition-source and its location constraint, especially in the case of direct injection SI engines where mixture stratification is important. A new compact microwave plasma igniter based on the principle of microwave resonance was developed and tested for propane combustion inside a constant volume chamber. The igniter was constructed from a thin ceramic panel with metal inlay tuned to the corresponding resonance frequency. Microwaves generated by semiconductor based oscillator were utilized for initiation of discharge. The small and flat form factor of the flat panel igniter allows it to be installed at any locations on the surface of the combustion chamber.
Technical Paper

Extension of Dilution Limit in Propane-Air Mixtures Using Microwave Discharge Igniter

2017-09-04
2017-24-0148
Exhaust gas recirculation (EGR) has proven to be beneficial for not only fuel economy improvement but also knock and emissions reduction. Combined with lean burning, it can assist gasoline engines to become cleaner, more efficient and to meet the stringent emissions limit. However, there is a practical limit for EGR percentage in current engines due to many constraints, one of which being the ignition source. The Microwave Discharge Igniter (MDI), which generates, enhances and sustains plasma discharge using microwave (MW) resonance was tested to assess its ability in extending the dilution limit. A combination of high-speed Schlieren imaging and pressure measurements were performed for propane-air mixture combustion inside a constant volume chamber to compare the dilution limits between MDI and conventional spark plug. Carbon dioxide addition was carried out during mixture preparation to simulate the dilution condition of EGR and limit the oxygen fraction.
Technical Paper

Emission Spectroscopy Study of the Microwave Discharge Igniter

2017-09-04
2017-24-0153
Requirements for reducing consumption of hydrocarbon fuels, as well as reducing emissions force the scientific community to develop new ignition systems. One of possible solutions is an extension of the lean ignition limit of stable combustion. With the decrease of the stoichiometry of combustible mixture the minimal size of the ignition kernel (necessary for development of combustion) increases. Therefore, it is necessary to use some special techniques to extend the ignition kernel region. Pulsed microwave discharge allows the formation of the ignition kernels of larger diameters. Although the microwave discharge igniter (MDI) was already tested for initiation of combustion and demonstrated quite promising results, the parameters of plasma was not yet studied before. Present work demonstrates the results of the dynamics of spatial structure of the MDI plasma with nanosecond time resolution.
Technical Paper

Influence of Engine Speed on Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine

2017-03-28
2017-01-0742
The present study aims to evaluate the effects of engine speed on gasoline compression ignition (GCI) combustion implementing double injection strategies. The double injection comprises of near-BDC first injection for the formation of a premixed charge and near-TDC second injection for the combustion phasing control. The engine performance and emissions testing of GCI combustion has been conducted in a single-cylinder light-duty diesel engine equipped with a common-rail injection system and fuelled with a conventional gasoline with 91 RON. The double injection strategy was investigated for various engine speeds ranging 1200~2000 rpm and the second injection timings between 12°CA bTDC and 3°CA aTDC.
Technical Paper

Influence of Injection Timing for Split-Injection Strategies on Well-Mixed High-Load Combustion Performance in an Optically Accessible Spark-Ignition Direct-Injection (SIDI) Engine

2017-03-28
2017-01-0657
One major drawback of spark-ignition direct-injection (SIDI) engines is increased particulate matter (PM) emissions at high load, due to increased wall wetting and a reduction in available mixture preparation time when compared to port-fuel injection (PFI). It is therefore necessary to understand the mechanics behind injection strategies which are capable of reducing these emissions while also maintaining the performance and efficiency of the engine. Splitting the fuel delivery into two or more injections is a proven way of working towards this goal, however, many different injection permutations are possible and as such there is no clear consensus on what constitutes an ideal strategy for any given objective. In this study, the effect of the timing of the first and second injections for an evenly split dual injection strategy are investigated in an optical SIDI engine running at 1200 RPM with an unthrottled intake.
Technical Paper

Effects of Microwave Enhanced Plasma on Diesel Spray Combustion

2017-03-28
2017-01-0707
The effect of microwave enhanced plasma (MW Plasma) on diesel spray combustion was investigated inside a constant volume high pressure chamber. A microwave-enhanced plasma system, in which plasma discharge generated by a spark plug was amplified using microwave pulses, was used as plasma source. This plasma was introduced to the soot cloud after the occurrence of autoignition, downstream of the flame lift-off position to allow additional plasma-generated oxidizers to be entrained into the hot combustion products. Planar laser induced incandescence (PLII) diagnostics were performed with laser sheet formed from 532 nm Nd:YAG laser to estimate possible soot reduction effect of MW plasma. A semi-quantitative comparison was made between without-plasma conventional diesel combustion and with-plasma combustion; with LII performed at different jet cross-sections in the combustion chamber.
Technical Paper

Double Injection Strategies for Ethanol-Fuelled Gasoline Compression Ignition (GCI) Combustion in a Single-Cylinder Light-Duty Diesel Engine

2016-10-17
2016-01-2303
Ethanol has been selected as a fuel for gasoline compression ignition (GCI) engines realising partially premixed charge combustion, considering its higher resistance to auto-ignition, higher evaporative cooling and oxygen contents than widely used gasoline, all of which could further improve already high efficiency and low smoke/NOx emissions of GCI engines. The in-cylinder phenomena and engine-out emissions were measured in a single-cylinder automotive-size common-rail diesel engine with a special emphasis on double injection strategies implementing early first injection near BDC and late second injection near TDC.
Journal Article

Assessing the Importance of Radiative Heat Transfer for ECN Spray A Using the Transported PDF Method

2016-04-05
2016-01-0857
The importance of radiative heat transfer on the combustion and soot formation characteristics under nominal ECN Spray A conditions has been studied numerically. The liquid n-dodecane fuel is injected with 1500 bar fuel pressure into the constant volume chamber at different ambient conditions. Radiation from both gas-phase as well as soot particles has been included and assumed as gray. Three different solvers for the radiative transfer equation have been employed: the discrete ordinate method, the spherical-harmonics method and the optically thin assumption. The radiation models have been coupled with the transported probability density function method for turbulent reactive flows and soot, where unresolved turbulent fluctuations in temperature and composition are included and therefore capturing turbulence-chemistry-soot-radiation interactions. Results show that the gas-phase (mostly CO2 ad H2O species) has a higher contribution to the net radiation heat transfer compared to soot.
Journal Article

A Comparative Analysis on Engine Performance of a Conventional Diesel Fuel and 10% Biodiesel Blends Produced from Coconut Oils

2015-09-06
2015-24-2489
This paper presents engine performance and emissions of coconut oil-derived 10% biodiesel blends in petroleum diesel demonstrating simultaneous reduction of smoke and NOx emissions and increased brake power. The experiments were performed in a single-cylinder version of a light-duty diesel engine for three different fuels including a conventional diesel fuel and two B10 fuels of chemical-catalyst-based methyl-ester biodiesel (B10mc) and biological-catalyst-based ethyl-ester biodiesel (B10eb). The engine tests were conducted at fixed speed of 2000 rpm and injection pressure of 130 MPa. In addition to the fuel variation, the injection timing and rate of exhaust gas recirculation (EGR) were also varied because they impact the combustion and thus the efficiency and emissions significantly.
Technical Paper

Development of Innovative Microwave Plasma Ignition System with Compact Microwave Discharge Igniter

2015-09-06
2015-24-2434
Extending the lean limit or/and exhaust-gas-recirculation (EGR) limit/s are necessary for improving fuel economy in spark ignition engines. One of the major problems preventing the engine to operate at lean conditions is stable and successful initial ignition kernel formation. A repeatable, stabilized ignition and early flame development are quite important for the subsequent part of the combustion cycle to run smooth without partial burn or cycle misfire. This study aims to develop an innovative plasma ignition system for reciprocating combustion engines with an aim to extend lean limit and for high pressure applications. This ignition system utilizes microwaves to generate plasma as an ignition source. This microwave plasma igniter is much simplified device compared to conventional spark plug. The microwave plasma ignition system consists of microwave oscillator, co-axial cable and microwave discharge igniter (MDI).
Journal Article

Automated Detection of Primary Particles from Transmission Electron Microscope (TEM) Images of Soot Aggregates in Diesel Engine Environments

2015-09-01
2015-01-1991
The major challenge of the post-processing of soot aggregates in transmission electron microscope (TEM) images is the detection of soot primary particles that have no clear boundaries, vary in size within the fractal aggregates, and often overlap with each other. In this study, we propose an automated detection code for primary particles implementing the Canny Edge Detection (CED) and Circular Hough Transform (CHT) on pre-processed TEM images for particle edge enhancement using unsharp filtering as well as image inversion and self-subtraction. The particle detection code is tested for soot TEM images obtained at various ambient and injection conditions, and from five different combustion facilities including three constant-volume combustion chambers and two diesel engines.
Technical Paper

A Numerical Study of the Influence of Different Operating Conditions on the Combustion Development in an Automotive-Size Diesel Engine

2015-09-01
2015-01-1852
In this paper, numerical simulations of an automotive-size optical diesel engine have been conducted employing the Reynolds-Averaged Navier-Stokes (RANS) equations with the standard k-ε turbulence model and a reduced n-heptane chemical mechanism implemented in OpenFOAM. The current paper builds on a previous work where the model has been validated for the same engine using optical diagnostic data. The present study investigates numerically the influence of different operating conditions - relevant for modern diesel engines - on the mixture formation development under non-reactive conditions as well as low- and high-temperature ignition behaviour and flame evolution in the presence of strong jet-wall interactions typically encountered in automotive-size diesel engines. Also, emissions of CO and unburned hydrocarbons (UHC) are considered.
X