Refine Your Search

Topic

Search Results

Technical Paper

Development of a High Sensitivity and High Response Portable Smoke Meter

2014-04-01
2014-01-1580
The filtration efficiency of a DPF drops when it suffers a failure such as melting and cracks during regeneration. And then, on-board diagnostics (OBD) device has become needed worldwide to detect a DPF failure. In the development of an OBD soot sensor, evaluation of the sensor demands a portable instrument which can measure the soot concentration for on-board and in-field use. Some of the emission regulations require the in-field emission measurements under normal in-use operation of a vehicle. This study is intended to develop a high sensitivity and high response portable smoke meter for on-board soot measurements and a reference to OBD soot sensors under development. The smoke meter accommodates a 650 nm laser diode, and its principle is based on light extinction in high soot concentration range and backward light scattering for low soot concentration measurement.
Technical Paper

Comprehensive Characterization of Particulate Emissions from Advanced Diesel Combustion

2007-07-23
2007-01-1945
The applicability of several popular diesel particulate matter (PM) measurement techniques to low temperature combustion is examined. The instruments' performance in measuring low levels of PM from advanced diesel combustion is evaluated. Preliminary emissions optimization of a high-speed light-duty diesel engine was performed for two conventional and two advanced low temperature combustion engine cases. A low PM (<0.2 g/kg_fuel) and NOx (<0.07 g/kg_fuel) advanced low temperature combustion (LTC) condition with high levels of exhaust gas recirculation (EGR) and early injection timing was chosen as a baseline. The three other cases were selected by varying engine load, injection timing, injection pressure, and EGR mass fraction. All engine conditions were run with ultra-low sulfur diesel fuel. An extensive characterization of PM from these engine operating conditions is presented.
Technical Paper

Measurement of Rate of Multiple-Injection in CDI Diesel Engines

2000-03-06
2000-01-1257
The injection rate meter based on W. Zeuch's method was improved to meet the recent requirement for precise measurement of the multiple injection rate and amount in CDI (Common rail Direct Injection) diesel engines. A pressure sensor with a high sensitivity was added to measure the small pressure increase due to the pilot injection and after injection. At the same time a flow meter having a high accuracy was installed in the discharge pipe line to obtain a correction factor to the modulus of elasticity of volume. As a result it became possible to measure the multiple injection amount at an accuracy of ±0.2mm3/stroke in a range up to 40mm3/stroke.
Technical Paper

Ignition, Combustion and Emissions in a DI Diesel Engine Equipped with a Micro-Hole Nozzle

1996-02-01
960321
In an attempt to achieve lean combustion in Diesel engines which has a potential for simultaneous reduction in no and soot, the authors developed a micro-hole nozzle which has orifices with a diameter as small as 0.06 mm. Combustion tests were carried out using a rapid compression-expansion machine which has a DI Diesel type combustion chamber equipped with the micro-hole nozzle. A comparison with the result of a conventional nozzle experiment revealed that the ignition delay was shortened by 30 %, and in spite of that, both peaks of initial premixed combustion and diffusion combustion increased significantly. The combustion in the case of the micro-hole nozzle experiment was accompanied with a decrease in soot emission, whereas an increase in NO emission.
Technical Paper

Development of a Rapid Compression-Expansion Machine Simulating Diesel Combustion

1995-10-01
952514
A rapid compression-expansion machine was developed, which can simulate intake, compression, expansion and exhaust strokes in a single Diesel cycle by an electrically controlled and hydraulically actuated driving system. The whole system which is composed of a hydraulic actuator, fuel injector and a valve driving device, is sequentially controlled by a micro-computer. The machine features; 1) accurate control of piston position at TDC, 2) no effect of lubricant on HC emission due to the use of dry piston rings; 3) independent control of local wall temperature; and 4) high power output to drive heavy piston at high frequency. The single cycle operation permits Diesel combustion experiments under a wide range of operating conditions and easy access of optical diagnostics with minimized amount of test fuel. The performance test showed that the machine can drive a DI Diesel type piston with a 100 mm bore at a maximum frequency of 16.7 Hz at a maximum compression pressure of 15 MPa.
Technical Paper

Numerical Simulation of Turbulent Mixing in a Transient Jet

1993-10-01
932657
To understand further the mixing process between the injected fuel and air in the combustion chamber of a diesel engine, the turbulent mixing process in a one-phase, two-dimensional transient jet was theoretically studied using the discrete vortex simulation. First, the simulation model was evaluated by comparisons between calculated and experimental data on two-dimensional turbulent jets. Second, the trajectories of the injected fluid elements marked with different colors were graphically demonstrated. Also the process of entrainment of the surrounding fluid into the jet was visually presented using colored tracers.
Technical Paper

High Temperature Diesel Combustion in a Rapid Compression-Expansion Machine

1991-09-01
911845
According to previous papers on the combustion process in LHR diesel engines the combustion seems to deteriorate in LHR diesel engines. However it has been unclear whether this was caused by the high temperature gas or high temperature combustion chamber walls. This study was intended to investigate the effect of gas temperature on the rate of heat release through the heat release analysis and other measurements using a rapid compression-expansion machine. Experiments conducted at high gas temperatures which was achieved by the employment of oxygen-argon-helium mixture made it clear that the combustion at a high gas temperature condition deteriorated actually and this was probably due to the poorer mixing rate because of the increase in gas viscosity at a high gas temperature condition.
Technical Paper

Fast Burning and Reduced Soot Formation via Ultra-High Pressure Diesel Fuel Injection

1991-02-01
910225
The relation between the characteristics of a non-evaporating spray and those of a corresponding frame achieved in a rapid compression machine was investigated experimentally. The fuel injection pressure was changed in a range of 55 to 260 MPa and the other injection parameters such as orifice diameter and injection duration were changed systematically. The characteristics of the non-evaporating spray such as the Sauter mean diameter and the mean excess air ratio of the spray were measured by an image analysis technique. The time required for a pressure rise due to combustion was taken as an index to characterize the flame. It was concluded that the mean excess air ratio of a spray is the major factor which controls the burning rate and that the high injection pressure is effective in shortening the combustion duration and reducing soot formation.
Technical Paper

Development of a New Measurement Tool for Fuel Injection Rate in Diesel Engines

1989-02-01
890317
A new instrument for the measurement of fuel injection rate in diesel engines was developed. The instrument, whose measurement principle is based on the Zeuch's method, i.e., the constant volume method, incorporates a device for the precise calibration of the volume elasticity of the fuel. This instrument was proved experimentally to have a capability of measuring injection rate with ± 1% accuracy up to an injection pump rotating speed of 2500rpm.
Technical Paper

Development of a Rapid Compression-Expansion Machine to Simulate Combustion in Diesel Engines

1988-10-01
881640
A rapid compression-expansion machine which can simulate the combustion processes in diesel engines is developed. The configuration of the combustion chamber is a 100 mm bore and a 90 mm stroke, and the compression ratio is 15. The piston is driven by an electro-hydraulic system with a thrust of 90 kN and the maximum frequency of 20 Hz. The whole system composed of a hydraulic actuator, a fuel injection system, and a valve driving unit is sequentially controlled by a computer. The reproducibility of the stop position of the piston at the end of compression is achieved with an accuracy of ±0.1 mm by employing a hydraulic-mechanical brake mechanism. The experiment shows that the combustion in the expansion stroke is achieved, and that the combustion characteristics such as the rate of heat release and indicated output as well as the exhaust emission can be measured.
Technical Paper

High Combustion Temperature for the Reduction of Particulate in Diesel Engines

1988-02-01
880423
Experiments on the effects of temperature T and equivalence ratio ϕ on soot formation at high pressures up to 5 MPa were conducted. The soot formation region is mapped on ϕ-T diagram using the results obtained in the experiments and the published data. NO formation region is also determined by the Zeldovich equations and is plotted on the same diagram. The time histories of ϕ and T of the flame in a DI diesel engine which was obtained by a gas sampling study, are plotted on the ϕ-T diagram to form a trajectory. Discussion of the trajectory in relation to both soot and NO formation region gives suggestion of a possibility of high temperature - rich mixture combustion to reduce particulate formation in diesel engines.
Technical Paper

LDA Measurement and a Theoretical Analysis of the In-Cylinder Air Motion in a DI Diesel Engine

1985-02-01
850106
The swirl velocity in the combustion bowl of a DI diesel engine was measured by means of laser doppler anemometry, varying the swirl intensity and engine speed. At the same time an axisymmetrical two dimensional laminar model for simulating the in-cylinder air motion was presented. The boundary condition of the flow near the wall was investigated by a comparison of predicted and measured swirl velocity, and as a result the free slip condition was found to be suitable for the present model. A comparison between measured and theoretical swirl velocity revealed that the secondary flow in the combustion bowl induced by an interaction between the squish and swirl flow transfers swirl velocities from points to points, causing a complex time variation of the swirl velocity at an observing point.
Technical Paper

Photographic And Image Analysis Studies Of Diesel Spray And Flame With A Rapid Compression Machine And A D. I. Diesel Engine (Interpretation And Conceptual Image)

1984-01-01
845009
Some conceptual image of a diesel spray flame and its combustion promotion is shown based on the various interpretations of the enormous data obtained in our laboratory in these several years, on the flame temperature measurement by the two color method, the composition analysis by gas sampling, as well as the focus shadow photography, back illuminated photography and luminous photography by a high speed camera, on the diesel spray flame created in a large scale Rapid Compression Machine (diameter ϕ 200 mm thickness 40 mm) and a D-I engine (diameter (ϕ 95 mm)
Technical Paper

An Air Cell DI Diesel Engine and Its Soot Emission Characteristics

1983-09-12
831297
A DI diesel engine with an air cell was developed as one of the combustion systems for reducing soot emission from diesel engines: The air is accumulated in the air cell during the compression stroke and is injected into the main chamber during a period after the end of injection. The air jet stirs the stagnant flame and promotes soot oxidation. A comparative experiments with the conventional system made it clear that the air-cell system effectively reduces soot emission at a medium and high load condition.
Technical Paper

A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion

1981-09-01
811004
As a basic tool for fundamental studies on combustion and heat transfer in diesel engines, a new rapid compression machine with a cylinder bore of 200 mm was developed which can realize in it a free diesel flame in a quiescent atmosphere, a diesel flame in a swirl, and a diesel flame impinging on the wall. The piston of this machine is driven by high pressure nitrogen, and its speed is controlled by a sophisticated hydraulic system. This paper describes the details of the mechanism and performances of the machine, and presents some examples of studies conducted with this machine.
Technical Paper

Measurement of Flame Temperature Distribution in a D.I. Diesel Engine by Means of Image Analysis of Nega-Color Photographs

1981-02-01
810183
A new technique was proposed for measuring instantaneous distributions of flame temperature and KL factor of luminous flames. Here the principle of the two-color method was used to calculate flame temperature and KL factor from the two-color densities of a film image taken on a nega-color film. We applied this technique to the high speed nega-color photographs of flames in a D. I. diesel engine operated with varying swirl ratios, and discussed the measured results of instantaneous distributions of flame temperature and KL factors.
Technical Paper

Application of Laser Doppler Anemometry to a Motored Diesel Engine

1980-09-01
800965
Some problems associated with applying LDA to the measurement of air motion in the engine’s cylinder are studied experimentally for both the forward and the back scattering technique in a motored diesel engine. The effects of the doppler broadening caused by the velocity gradient and the diameters of the scattering particles are discossed. The decaying process and the structure of the in-cylinder flow field are studied using the measurements of the main flow velocity, the turbulent intensity and macro scales and normalised power spectrum of the turbulence. A comparison measurement is also made between the forward scattering and the back scattering techniques.
Technical Paper

A Study on the Application of the Two–Color Method to the Measurement of Flame Temperature and Soot Concentration in Diesel Engines

1980-09-01
800970
Flame temperature and KL factor in a DI diesel engine are measured optically by the two-color method. Some differences are observed between the measure values at visible and infrared wavelengths. These differences are caused by: (1) effect of change of index α in time at infrared wavelength during combustion period; (2) effect of distributions of temperature and soot concentration along optical path; and (3) effect of reflection at the walls. The optical characteristics and some other problems on the instrumentation of the two-color method at both wavelengths are also discussed.
Technical Paper

A Gas Sampling Study on the Formation Processes of Soot and NO in a DI Diesel Engine

1980-02-01
800254
The concentrations of soot, NO and the other combustion products were measured by incylinder gas sampling in a DI diesel engine. The effects of injection timing, swirl ratio, and combustion chamber geometry on the formation and emission processes of soot and NO were studied. The following results were obtained: (1) Soot is promptly formed in the flame during the early combustion period where the equivalence ratio in the flame is high over 1.0. Thereafter almost all the formed soot is swiftly burnd up by oxidation during the middle combustion period. This process mainly determines the exhaust soot concentration. (2) NO is formed in the flame during the early and middle combustion period where the flame temperature is high over 2000 K. The highest NO concentration is observed at the flame tip swept by the air swirl. Though the concentration of the formed NO decreases by dilusion it nearly constant during the later combustion period.
Technical Paper

The Effects of Some Engine Variables on Measured Rates of Air Entrainment and Heat Release in a DI Diesel Engine

1980-02-01
800253
The rate of air entrainment into the flame and the rate of heat release are thermodynamically calculated in a DI diesel engine: A two-zone model is proposed which uses as input data three measured values of cylinder pressure, flame temperature, and injection rate. The correlations between both rates under various conditions make it clear that the combustion during early and main periods of diffusion combustion is mainly controlled by air entrainment into the flame. The effects of injection pressure, piston configuration, and swirl intensity on the air entrainment are also studied. And the extent of mixing in the flame is evaluated by the equivalence ratio in the flame which is also obtained by the same model. The trends of exhausted NO and soot concentrations well correlate with the equivalence ratios in the flame and measured flame temperatures under all conditions studied.
X