Refine Your Search

Topic

Author

Search Results

Technical Paper

Thermo-Mechanical Fatigue and Life Prediction of Turbocharged Engine Cylinder Head

2020-04-14
2020-01-1163
In order to predict more accurately the cracking failure of cylinder head during the durability test of turbocharged engine in the development, a comprehensive evaluation method of cylinder head durability is established. In this method, both high cycle and low cycle fatigue performance are calculated to provide failure assessment. The method is then applied to investigate the root cause of cracking of cylinder head and assess design optimizations. Multidisciplinary approach is adopted to optimize high cycle fatigue and low cycle fatigue performance simultaneously to achieve the best comprehensive performance. In this paper, the details of the method development are described. First, the high cycle and low cycle fatigue properties of cylinder head material were measured at different temperature condition, and the fatigue life and high temperature creep properties of materials under thermo-mechanical fatigue cycle were also tested.
Journal Article

Side Impact Pressure Sensor Predictions with Computational Gas and Fluid Dynamic Methods

2017-03-28
2017-01-0379
Three computational gas and fluid dynamic methods, CV/UP (Control Volume/Uniform Pressure), CPM (Corpuscular Particle Method), and ALE (Arbitrary Lagrangian and Eulerian), were investigated in this research in an attempt to predict the responses of side crash pressure sensors. Acceleration-based crash sensors have been used extensively in the automotive industry to determine the restraint system firing time in the event of a vehicle crash. The prediction of acceleration-based crash pulses by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crush zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side crash applications.
Technical Paper

Study on Commercial Vehicle ECR Thermal Management System

2016-09-18
2016-01-1935
With the continuous increasing requirements of commercial vehicle weight and speed on highway transportation, conventional friction brake is difficult to meet the braking performance. To ensure the driving safety of the vehicle in the hilly region, the eddy current retarder (ECR) has been widely used due to its fast response, lower prices and convenient installation. ECR brakes the vehicle through the electromagnetic force generated by the current, and converted vehicle mechanical energy into heat through magnetic field. Air cooling structure is often used in the traditional ECR and cooling performance is limited, which causes low braking torque, thermal recession, and low reliability and so on. The water jacket has been equipped outside the eddy current region in this study, and the electric ECR is cooled through the water circulating in the circuit, which prolongs its working time.
Technical Paper

Thermal-Mechanical Fatigue Prediction of Aluminum Cylinder Head with Integrated Exhaust Manifold of a Turbo Charged Gasoline Engine

2016-04-05
2016-01-1085
The present paper describes a CAE analysis approach to evaluate the thermal-mechanical fatigue (TMF) of the cylinder head of a turbo charged GDI engine with integrated exhaust manifold. It allows design engineers to identify structural weakness at the early stage or to find the root cause of cylinder head TMF failures. At SAIC Motor, in test validation phase a newly developed engine must pass a strict durability test on test bed under thermal cycling conditions so that the durability characteristics can be evaluated. The accelerated dynamometer test is so designed that it gives equivalent cumulative damage as what would occur in the field. The duty cycle includes rated speed full load, rated speed motored and idle speed conditions. A transient none-linear finite element method is used to calculate the plastic deformation and thermal mechanical behaviors of the cylinder head assembly during thermal cycling.
Technical Paper

Study of Energy Recovery System Based on Organic Rankine Cycle for Hydraulic Retarder

2016-04-05
2016-01-0239
The hydraulic retarder is an auxiliary braking device used in heavy duty vehicle. It generates braking forceby liquid damping effect and makes inertial energy into thermal energy of the transmission medium when the vehicleis in thedownhill. The traditional thermal management system of the hydraulic retarder dissipates the heat of transmission medium out of the vehicle directly, which causes a big waste of energy, meanwhilethe thermal management system components need to consume engine power. This study applies organic Rankine cycle (ORC)cooling system to meet the high power cooling requirements of the hydraulic retarder and recover waste heat energy from the transmission medium at the same time and then supply energy to the thermal management system, which could save the parasitic power of the engine and improve the comprehensive energy utilization ratio of the vehicle.
Journal Article

Simulation and Optimization of an Aluminum-Intensive Body-on-Frame Vehicle for Improved Fuel Economy and Enhanced Crashworthiness - Front Impacts

2015-04-14
2015-01-0573
Motivated by a combination of increasing consumer demand for fuel efficient vehicles, more stringent greenhouse gas, and anticipated future Corporate Average Fuel Economy (CAFE) standards, automotive manufacturers are working to innovate in all areas of vehicle design to improve fuel efficiency. In addition to improving aerodynamics, enhancing internal combustion engines and transmission technologies, and developing alternative fuel vehicles, reducing vehicle weight by using lighter materials and/or higher strength materials has been identified as one of the strategies in future vehicle development. Weight reduction in vehicle components, subsystems and systems not only reduces the energy needed to overcome inertia forces but also triggers additional mass reduction elsewhere and enables mass reduction in full vehicle levels.
Journal Article

Design of the Exhaust Manifold of a Turbo Charged Gasoline Engine Based on a Transient Thermal Mechanical Analysis Approach

2014-10-13
2014-01-2882
The present paper describes a CAE analysis approach to evaluate the design of exhaust manifold of a turbo charged gasoline engine. It allows design engineers to identify structural weakness at the early stage or to find the root cause of exhaust manifold failures. A transient none-linear finite element method is used to calculate the plastic deformation and thermal mechanical behaviors of the exhaust manifold assembly during thermal shock cycles, which include rated speed full load, rated speed motored and idle speed conditions. A transient heat transfer simulation is performed to provide thermal boundary conditions for the nonlinear stress/strain analysis. The finite element model includes a part of cylinder head, exhaust manifold, gaskets, turbo charger housing, catalytic converter, brackets, bolts and nuts. The results show that plastic deformation is the main cause of manifold cracking and the manifold flange distortion causes the exhaust leakage.
Technical Paper

Analysis of Hydraulic Retarder Air-Friction Characteristics

2014-09-28
2014-01-2504
The retarder is an important auxiliary braking device of heavy vehicles. However, the stirring air in the working wheels of the idle retarder would cause the transmission loss when the vehicle is traveling in non-braking state [1]. For certain driving conditions, the air-friction characteristics in the working wheels of the idle retarder are analyzed first. Then the relationship between the air density and the torque produced by stirring air is studied. The thermal characteristics of the retarder in the idle condition are also concerned according to the energy flow and heat transfer. Meanwhile, the increased transmission loss caused by the rising temperature of the stirring air and its inference on the transmission stability are also studied. Finally, the optimal range of air vacuum degrees in the working wheel of the idle retarder is determined and the evaluations for the air-friction and the heat transfer characteristics are given for the vacuum degrees.
Technical Paper

Effects of Different Oil Inlet and Outlet Distribution on Hydraulic Retarder

2014-09-28
2014-01-2498
The paper studies on the basis of VOITH R133-2 hydraulic retarder, the inlet and outlet structures of the oil passage on the stator are rearranged, which are made a more uniform structure distribution. In order to find out the characteristics of this kind of structure arrangement. The flow passage models for two different structures are established, and the internal flow field characteristics are studied by using the CFD (Computational Fluid Dynamics) method. The flow rules of the internal oil, the distribution of pressure field and velocity field as well as output braking torque are obtained. The results show that rearranged structure retarder has a more uniform pressure distribution and a lower output braking torque than original structure retarder. And the simulation verifies the effectiveness of simulating true flow by CFD in hydraulic retarder flow field and conduct retarder design and structure optimization.
Journal Article

Application of CAE in Design Optimization of a Wet Dual Cutch Transmission and Driveline

2014-04-01
2014-01-1755
This paper describes the application of CAE tools in the design optimization of a DCT and driveline system of a passenger vehicle, with emphasis on NVH performance. The multi-body dynamics simulation tools are employed for driveline system analysis. The MBD model consists of the engine, transmission, clutch, drive shafts, tires and vehicle. The wheel slip effects are considered in the calculation of shuffle frequencies. In the analysis of gear whine, the transmission housing, gears and shafts are modeled by detailed 3-D finite element models, so that the mesh stiffness of the gears and the housing support stiffness are described more accurately. The calculated velocity spectra of the housing are presented. The prediction of gear rattle in the transmission is carried out. The loose gear acceleration index and the averaged impact power of free gears are calculated to assess the rattle generation potential and the level of rattle severity.
Journal Article

Modeling of Adaptive Energy Absorbing Steering Columns for Dynamic Impact Simulations

2014-04-01
2014-01-0802
The objective of this paper focused on the modeling of an adaptive energy absorbing steering column which is the first phase of a study to develop a modeling methodology for an advanced steering wheel and column assembly. Early steering column designs often consisted of a simple long steel rod connecting the steering wheel to the steering gear box. In frontal collisions, a single-piece design steering column would often be displaced toward the driver as a result of front-end crush. Over time, engineers recognized the need to reduce the chance that a steering column would be displaced toward the driver in a frontal crash. As a result, collapsible, detachable, and other energy absorbing steering columns emerged as safer steering column designs. The safety-enhanced construction of the steering columns, whether collapsible, detachable, or other types, absorb rather than transfer frontal impact energy.
Journal Article

Modeling of an Advanced Steering Wheel and Column Assembly for Frontal and Side Impact Simulations

2014-04-01
2014-01-0803
This paper presents the final phase of a study to develop the modeling methodology for an advanced steering assembly with a safety-enhanced steering wheel and an adaptive energy absorbing steering column. For passenger cars built before the 1960s, the steering column was designed to control vehicle direction with a simple rigid rod. In severe frontal crashes, this type of design would often be displaced rearward toward the driver due to front-end crush of the vehicle. Consequently, collapsible, detachable, and other energy absorbing steering columns emerged to address this type of kinematics. These safety-enhanced steering columns allow frontal impact energy to be absorbed by collapsing or breaking the steering columns, thus reducing the potential for rearward column movement in severe crashes. Recently, more advanced steering column designs have been developed that can adapt to different crash conditions including crash severity, occupant mass/size, seat position, and seatbelt usage.
Journal Article

Side Crash Pressure Sensor Prediction for Unitized Vehicles: An ALE Approach

2013-04-08
2013-01-0657
With a goal to help develop pressure sensor calibration and deployment algorithms using computer simulations, an Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this research to predict the responses of side crash pressure sensors for unitized vehicles. For occupant protection, acceleration-based crash sensors have been used in the automotive industry to deploy restraint devices when vehicle crashes occur. With improvements in the crash sensor technology, pressure sensors that detect pressure changes in door cavities have been developed recently for vehicle crash safety applications. Instead of using acceleration (or deceleration) in the acceleration-based crash sensors, the pressure sensors utilize pressure change in a door structure to determine the deployment of restraint devices. The crash pulses recorded by the acceleration-based crash sensors usually exhibit high frequency and noisy responses.
Journal Article

Side Crash Pressure Sensor Prediction for Body-on-Frame Vehicles: An ALE Approach

2013-04-08
2013-01-0666
In an attempt to assist pressure sensor algorithm and calibration development using computer simulations, an Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this study to predict the responses of side crash pressure sensors for body-on-frame vehicles. Acceleration based, also called G-based, crash sensors have been used extensively to deploy restraint devices, such as airbags, curtain airbags, seatbelt pre-tensioners, and inflatable seatbelts, in vehicle crashes. With advancements in crash sensor technologies, pressure sensors that measure pressure changes in vehicle side doors have been developed recently and their applications in vehicle crash safety are increasing. The pressure sensors are able to detect and record the dynamic pressure change when the volume of a vehicle door changes as a result of a crash.
Journal Article

Side Crash Pressure Sensor Prediction: An Improved Corpuscular Particle Method

2012-04-16
2012-01-0043
In an attempt to predict the responses of side crash pressure sensors, the Corpuscular Particle Method (CPM) was adopted and enhanced in this research. Acceleration-based crash sensors have traditionally been used extensively in automotive industry to determine the air bag firing time in the event of a vehicle accident. The prediction of crash pulses obtained from the acceleration-based crash sensors by using computer simulations has been very challenging due to the high frequency and noisy responses obtained from the sensors, especially those installed in crash zones. As a result, the sensor algorithm developments for acceleration-based sensors are largely based on prototype testing. With the latest advancement in the crash sensor technology, side crash pressure sensors have emerged recently and are gradually replacing acceleration-based sensor for side impact applications.
Journal Article

Side Crash Pressure Sensor Prediction: An ALE Approach

2012-04-16
2012-01-0046
An Arbitrary Lagrangian Eulerian (ALE) approach was adopted in this study to predict the responses of side crash pressure sensors in an attempt to assist pressure sensor algorithm development by using computer simulations. Acceleration-based crash sensors have traditionally been used to deploy restraint devises (e.g., airbags, air curtains, and seat belts) in vehicle crashes. The crash pulses recorded by acceleration-based crash sensors usually exhibit high frequency and noisy responses depending on the vehicle's structural design. As a result, it is very challenging to predict the responses of acceleration-based crash sensors by using computer simulations, especially those installed in crush zones. Therefore, the sensor algorithm developments for acceleration-based sensors are mostly based on physical testing.
Journal Article

Fracture Modeling of AHSS in Component Crush Tests

2011-04-12
2011-01-0001
Advanced High Strength Steels (AHSS) have been implemented in the automotive industry to balance the requirements for vehicle crash safety, emissions, and fuel economy. With lower ductility compared to conventional steels, the fracture behavior of AHSS components has to be considered in vehicle crash simulations to achieve a reliable crashworthiness prediction. Without considering the fracture behavior, component fracture cannot be predicted and subsequently the crash energy absorbed by the fractured component can be over-estimated. In full vehicle simulations, failure to predict component fracture sometimes leads to less predicted intrusion. In this paper, the feasibility of using computer simulations in predicting fracture during crash deformation is studied.
Journal Article

Crash Performance Simulation of a Multilayer Thermoplastic Fuel Tank with Manufacturing and Assembly Consideration

2011-04-12
2011-01-0009
The modeling of plastic fuel tank systems for crash safety applications has been very challenging. The major challenges include the prediction of fuel sloshing in high speed impact conditions, the modeling of multilayer thermoplastic fuel tanks with post-forming (non-uniform) material properties, and the modeling of tank straps with pre-tensions. Extensive studies can be found in the literature to improve the prediction of fuel sloshing. However, little research had been conducted to model the post-forming fuel tank and to address the tension between the fuel tank and the tank straps for crash safety simulations. Hoping to help improve the modeling of fuel systems, the authors made the first attempt to tackle these major challenges all at once in this study by dividing the modeling of the fuel tank into eight stages. An ALE (Arbitrary Lagrangian-Eulerian) method was adopted to simulate the interaction between the fuel and the tank.
Technical Paper

In-cylinder CFD Simulation of a New 2.0L Turbo Charged GDI Engine

2011-04-12
2011-01-0826
This paper describes the application of CFD tools in the design optimization of intake ports, combustion chamber and injector of SAIC Motor's 2.0L turbo charged direct injection gasoline engine. For a more realistic simulation of spray processes, detailed investigations of mesh dependency, wall impingement models were conducted. The validation of the spray simulation was carried out by comparison between the experimental data and calculation results. To investigate the droplet-wall interactions, a comparison between the results from Bai's model and the instantaneous evaporation model was made. With the Star-CD code, the in-cylinder air motion, fuel injection and air/fuel mixing in the combustion system with central injector were evaluated, at different engine operation conditions and start of injection timings. Several proposed intake port options, with different tumble levels, were numerically investigated and compared.
Journal Article

Results of Auto/Steel Partnership (A/SP) Steel Tube Hydroforming Materials and Lubricants Experimental Projects

2009-04-20
2009-01-1390
Over the past twelve years the Auto/Steel Partnership (A/SP) Tube Hydroforming Materials and Lubricants Team has been conducting projects to aid the implementation of tubular hydroforming in automotive applications. The approach taken has been to initially gain a basic understanding of the hydroforming process and potential issues and to then extend learning to real world applications of increasing complexity. The experimental project investigations have encompassed various steel grades with a recent focus on advanced high strength steel (AHSS) and tailor welded tubes (TWTs) in free expansion and corner fill processes using several types of lubricants. Project plans are developed based on identified knowledge gaps, barriers to implementation and technology needs as follows: Effects of forming operations prior to hydroforming including tube making, pre-bending and pre-forming. Forming limits (e.g. forming limit diagrams (FLDs)) and other failure criterion.
X