Refine Your Search

Topic

Search Results

Viewing 1 to 14 of 14
Standard

Recommended Practice for Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles

2018-07-23
HISTORICAL
J2711_201807
This SAE Recommended Practice was established to provide an accurate, uniform and reproducible procedure for simulating use of heavy-duty hybrid-electric vehicles (HEVs) and conventional vehicles on dynamometers for the purpose of measuring emissions and fuel economy. Although the recommended practice can be applied using any driving cycle, the practice recommends three cycles: the Manhattan cycle, representing low-speed transit bus operation; the Orange County Transit Cycle, representing intermediate-speed bus operation; and the Urban Dynamometer Driving Schedule (UDDS) cycle representing high-speed operation for buses and tractor-trailers. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, PM, CO2), as that decision will depend on the objectives of the tester.
Standard

Snap-Acceleration Smoke Test Procedure for Heavy-Duty Diesel Powered Vehicles

2018-02-15
CURRENT
J1667_201802
This SAE Recommended Practice applies to vehicle exhaust smoke measurements made using the Snap-Acceleration test procedure. Because this is a non-moving vehicle test, this test can be conducted along the roadside, in a truck depot, a vehicle repair facility, or other test facilities. The test is intended to be used on heavy-duty trucks and buses powered by diesel engines. It is designed to be used in conjunction with smokemeters using the light extinction principle of smoke measurement. This procedure describes how the snap-acceleration test is to be performed. It also gives specifications for the smokemeter and other test instrumentation and describes the algorithm for the measurement and quantification of the exhaust smoke produced during the test. Included are discussions of factors which influence snap-acceleration test results and methods to correct for these conditions.
Standard

Liquefied Natural Gas (LNG) Vehicle Fuel

2018-02-12
CURRENT
J2699_201802
This SAE Information Report applies to liquefied natural gas used as vehicle fuel and requires LNG producers to provide the required information on the fuel composition and its “dispense by” date.
Standard

Exhaust Brake Dynamometer Test and Capability Rating Procedure

2012-07-02
CURRENT
J2458_201207
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
Standard

Engine Retarder Dynamometer Test and Capability Rating Procedure

2012-07-02
CURRENT
J1621_201207
This SAE Recommended Practice has been adopted by SAE to specify: a A basis for net engine retarder power rating b Reference inlet air test conditions c A method for correcting observed engine retarder power to reference conditions d A method for determining net engine retarder power with a dynamometer
Standard

Liquefied Natural Gas (LNG) Vehicle Fuel

2011-07-08
HISTORICAL
J2699_201107
This SAE Information Report applies to liquefied natural gas used as vehicle fuel and requires LNG producers to provide the required information on the fuel composition and its “dispense by” date.
Standard

Recommended Practice for Measuring Fuel Economy and Emissions of Hybrid-Electric and Conventional Heavy-Duty Vehicles

2002-09-20
HISTORICAL
J2711_200209
This SAE Recommended Practice was established to provide an accurate, uniform and reproducible procedure for simulating use of heavy-duty hybrid-electric vehicles (HEVs) and conventional vehicles on dynamometers for the purpose of measuring emissions and fuel economy. Although the recommended practice can be applied using any driving cycle, the practice recommends three cycles: the Manhattan cycle, representing low-speed transit bus operation; the Orange County Transit Cycle, representing intermediate-speed bus operation; and the Urban Dynamometer Driving Schedule (UDDS) cycle representing high-speed operation for buses and tractor-trailers. This document does not specify which emissions constituents to measure (e.g., HC, CO, NOx, PM, CO2), as that decision will depend on the objectives of the tester.
Standard

Recommended Remanufacturing Procedures for Manual Transmission Clutch Assemblies

2000-08-28
HISTORICAL
J1915_200008
This SAE Recommended Practice is prepared as a guideline to improve and maintain the quality of remanufactured automotive products. Installation of remanufactured or rebuilt products is often an economical way to repair a vehicle even though they may not fully be equivalent to original equipment parts. Before processing any part, a remanufacturer should determine if the original design and present condition of the core are suitable for remanufacturing, so as to provide durable operation of the part as well as acceptable performance when installed in a vehicle. The remanufacturer should also carefully consider the safety aspects of the product and any recommendations of the original manufacturer related to remanufacturing or rebuilding their product.
Standard

SNAP-ACCELERATION SMOKE TEST PROCEDURE FOR HEAVY-DUTY DIESEL POWERED VEHICLES

1996-02-01
HISTORICAL
J1667_199602
This SAE Recommended Practice applies to vehicle exhaust smoke measurements made using the Snap-Acceleration test procedure. Because this is a non-moving vehicle test, this test can be conducted along the roadside, in a truck depot, a vehicle repair facility, or other test facilities. The test is intended to be used on heavy-duty trucks and buses powered by diesel engines. It is designed to be used in conjunction with smokemeters using the light extinction principle of smoke measurement. This procedure describes how the snap-acceleration test is to be performed. It also gives specifications for the smokemeter and other test instrumentation and describes the algorithm for the measurement and quantification of the exhaust smoke produced during the test. Included are discussions of factors which influence snap-acceleration test results and methods to correct for these conditions.
X