Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Characterization of TEOST Deposits and Comparison to Deposits Formed on Sequence IIIG Pistons

2009-11-02
2009-01-2663
In the next ILSAC passenger car motor oil specification the Sequence IIIG engine test, as well as two versions of the Thermo-Oxidation Engine Oil Simulation Test (TEOST) have been proposed as tests to determine the ability of crankcase oils to control engine deposits. The Sequence IIIG engine test and the TEOST MHT test are designed to assess the ability of lubricants to control piston deposits and the TEOST 33 test is designed to assess the ability of lubricants to control turbocharger deposits. We have previously characterized the chemical composition of Sequence IIIG piston deposits using thermogravimetric, infrared and SEM/EDS analyses. Sequence IIIG piston deposits contain a significant amount of carbonaceous material and the carbonaceous material is more prevalent on sections of the pistons that should encounter higher temperatures. Furthermore, the carbonaceous material appears to be a deposit formed by the Sequence IIIG fuel.
Journal Article

Friction and Film-Formation Properties of Oil-Soluble Inorganic Nanoparticles

2008-10-06
2008-01-2460
Many vehicle and engine test studies have shown that the fuel efficiency of automobiles can be improved by reducing friction between moving parts. Typically, organic friction modifiers such as glycerol monooleate (GMO) or metal containing friction modifiers such as molybdenum dithiocarbamate (MoDTC) have been added to engine oils to reduce boundary friction and improve fuel efficiency. These traditional friction modifiers act by forming either a self-assembled organic film (in the case of GMO) or a Mo-disulfide chemical film (in the case of MoDTC). More recently, the ability of inorganic tungsten disulfide (WS2) nanoparticles to reduce boundary friction has been described. Martin has proposed that WS2 nanoparticles are transported into a contact zone where they are compressed and peel open like an onion to form a film. In this study, oil-soluble inorganic nanoparticles containing cerium (Ce) and zinc (Zn) have been synthesized.
Technical Paper

Characterization of Deposits Formed on Sequence IIIG Pistons

2005-10-24
2005-01-3820
In the latest passenger car motor oil specifications the Sequence IIIG engine test is used to determine the ability of lubricants to control piston deposits. We have analyzed the chemical composition of Sequence IIIG deposits in order to determine the source of the piston deposits and determine if the mechanism for deposit formation in the Sequence IIIG engine test is similar to previously published mechanisms for formation of high temperature engine deposits. These previous mechanisms show that combustion by-products react with lubricant in the piston ring zone. The mixture of combustion by-products and lubricant are oxidized to form deposit precursors which are further oxidized to form deposits. Since the Sequence IIIG engine test uses lead-free fuel it is important to reexamine the nature of piston deposits formed in gasoline engines and in particular in the Sequence IIIG engine test.
Technical Paper

Comparison of the Physical and Chemical Changes Occurring in Oils During Aging in Vehicle and Engine Fuel Economy Tests

1998-10-19
982504
Oils, which do not contain Molybdenum (Mo)-based friction modifiers, were aged in vehicle and engine fuel economy tests in order to determine if the different aging protocols caused similar changes in the physical and chemical properties of these oils. Vehicle and engine tests were found to cause similar changes in the high temperature high shear (HTHS) viscosities and boundary friction coefficients of oils. We also observed that the extent of oil oxidation, nitration and volatilization occurring in the vehicle tests could be duplicated by aging in the engine tests. The fuel economy performance of aged oils was also measured in engine tests and found to be highly dependent upon the aged oil's HTHS viscosity. However, we observed that an aged oil's boundary friction coefficient, by itself, did not correlate to an aged oil's fuel economy performance in the high temperature fuel economy measurement stages of engine tests.
X