Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

An Investigation of the Transient DPF Pressure Drop under Cold Start Conditions in Diesel Engines

2017-10-08
2017-01-2372
To monitor emission-related components/systems and to evaluate the presence of malfunctioning or failures that can affect emissions, current diesel engine regulations require the use of on-board diagnostics (OBD). For diesel particulate filters (DPF), the pressure drop across the DPF is monitored by the OBD as the pressure drop is approximately linear related to the soot mass deposited in a filter. However, sudden acceleration may cause a sudden decrease in DPF pressure drop under cold start conditions. This appears to be caused by water that has condensed in the exhaust pipe, but no detailed mechanism for this decrease has been established. The present study developed an experimental apparatus that reproduces rapid increases of the exhaust gas flow under cold start conditions and enables independent control of the amount of water as well as the gas flow rate supplied to the DPF.
Technical Paper

Performance Improvements in a Natural Gas Dual Fuel Compression Ignition Engine with 250 MPa Pilot Injection of Diesel Fuel as an Ignition Source

2016-10-17
2016-01-2306
The engine performance and the exhaust gas emissions in a dual fuel compression ignition engine with natural gas as the main fuel and a small quantity of pilot injection of diesel fuel with the ultra-high injection pressure of 250 MPa as an ignition source were investigated at 0.3 MPa and 0.8 MPa IMEP. With increasing injection pressure the unburned loss decreases and the thermal efficiency improves at both IMEP conditions. At the 0.3 MPa IMEP the THC and CO emissions are significantly reduced when maintaining the equivalence ratio of natural gas with decreasing the volumetric efficiency by intake gas throttling, but the NOx emissions increase and excessive intake gas throttling results in a decrease in the indicated thermal efficiency. Under the 250 MPa pilot injection condition simultaneous reductions in the NOx, THC, and CO emissions can be established with maintaining the equivalence ratio of natural gas by intake gas throttling.
Technical Paper

Visualization and Heat Release Analysis of Premixed Diesel Combustion with Various Fuel Ignitabilities and Oxygen Concentrations in a Constant Volume Combustion Vessel

2013-04-08
2013-01-0899
Low NOx and soot free premixed diesel combustion can be realized by increasing ignition delays in low oxygen atmospheres, as well as the combustion here also depends on fuel ignitability. In this report single intermittent spray combustion with primary reference fuels and a normal heptane-toluene blend fuel under several oxygen concentrations in a constant volume combustion vessel was analyzed with high-speed color video and pressure data. Temperature and KL factor distributions are displayed with a 2-D two-color method. The results show that premixing is promoted with a decrease in oxygen concentration, and the local high temperature regions, above 2200 K, as well as the duration of their appearance decreases with the oxygen concentration. With normal heptane, mild premixed diesel combustion can be realized at 15 vol% oxygen and there is little luminous flame.
Technical Paper

Identification of Factors Influencing Premixed Diesel Engine Noise and Mechanism of Noise Reduction by EGR and Supercharging

2013-04-08
2013-01-0313
To determine the engine noise reduction methods, an engine noise research was conducted experimentally with a PCCI diesel engine. The engine employed in the experiments was a supercharged, single-cylinder DI diesel engine with a high pressure common rail fuel injection system. The engine noise was sampled by two microphones and the sampled engine noise was averaged and analyzed by an FFT sound analyzer. The engine was equipped with a pressure transducer and the combustion noise was calculated from the power spectrum of the FFT analysis of the in-cylinder pressure wave form and the cross power spectrum of the sound pressure of the engine noise. It is well known that the maximum pressure rise rate is the main parameter related to the engine noise. The PCCI engine was operated at a 1.0 MPa/°CA maximum pressure rise rate to eliminate the effects of the maximum pressure rise rate, and parameters which had the dominant effect on engine noise and combustion noise were determined.
Journal Article

Analysis of the Trade-off between Soot and Nitrogen Oxides in Diesel-Like Combustion by Chemical Kinetic Calculation

2011-08-30
2011-01-1847
This study makes use of the detailed mechanisms of n-heptane combustion, from gas reactions to soot particle formation and oxidation, and a two-stage model based on the CHEMKIN reactor network is developed and used to investigate the trade-off between soot and NOx emissions. The effects of the equivalence ratio, EGR, ambient pressure and temperature, and initial particle diameter are observed for various residence times. The results show that high rates of NOx formation are unavoidable under conditions where high reduction rates of soot particles are obtained. This suggests that suppression of the amount of soot during the formation stage is essential for simultaneous reductions in engine-out soot and NOx emissions.
Technical Paper

Combustion Characteristics of Emulsified Blends of Aqueous Ethanol and Diesel Fuel in a Diesel Engine with High Rates of EGR and Split Fuel Injections

2011-08-30
2011-01-1820
Silent, clean, and efficient combustion was realized with emulsified blends of aqueous ethanol and diesel fuel in a DI diesel with pilot injection and cooled EGR. The pilot injection sufficiently suppressed the rapid combustion to acceptable levels. The thermal efficiency with the emulsified fuel improved as the heat release with the pilot injection was retarded to near top dead center, due to poor ignitability and also due to a reduction in afterburning. With the emulsified fuel containing 40 vol% ethanol and 10 vol% water (E40W10), the smokeless operation range can be considerably extended even under low fuel injection pressure or low intake oxygen content conditions.
Technical Paper

Improvements in Low Temperature Diesel Combustion with Blending ETBE to Diesel Fuel

2007-07-23
2007-01-1866
The effects of blending ETBE to diesel fuel on the characteristics of low temperature diesel combustion and exhaust emissions were investigated in a naturally-aspirated DI diesel engine with large rates of cooled EGR. Low temperature smokeless diesel combustion in a wide EGR range was established with ETBE blended diesel fuel as mixture homogeneity is promoted with increased premixed duration due to decreases in ignitability as well as with improvement in fuel vaporization due to the lower boiling point of ETBE. Increasing the ETBE content in the fuel helps to suppress smoke emissions and maintain efficient smokeless operation when increasing EGR, however a too high ETBE content causes misfiring at larger rates of EGR. While the NOx emissions increase with increases in ETBE content at high intake oxygen concentrations, NOx almost completely disappears when reducing the intake oxygen content below 14 % with cooled EGR.
Technical Paper

Dependence of Ultra-High EGR and Low Temperature Diesel Combustion on Fuel Injection Conditions and Compression Ratio

2006-10-16
2006-01-3386
This research investigates the influences of the injection timing, injection pressure, and compression ratio on the combustion and exhaust emissions in a single cylinder 1.0 L DI diesel engine operating with ultra-high EGR. Longer ignition delays due to either advancing or retarding the injection timing reduced the smoke emissions, but advancing the injection timing has the advantages of maintaining the thermal efficiency and preventing misfiring. Smokeless combustion is realized with an intake oxygen content of only 9-10% regardless of the injection pressure. Reduction in the compression ratio is effective to reduce the in-cylinder temperature and increase the ignition delay as well as to expand the smokeless combustion range in terms of EGR and IMEP. However, the thermal efficiency deteriorates with excessively low compression ratios.
Technical Paper

Chemical-Kinetic Analysis on PAH Formation Mechanisms of Oxygenated Fuels

2003-10-27
2003-01-3190
The thermal cracking and polyaromatic hydrocarbon (PAH) formation processes of dimethyl ether (DME), ethanol, and ethane were investigated with chemical kinetics to determine the soot formation mechanism of oxygenated fuels. The modeling analyzed three processes, an isothermal constant pressure condition, a temperature rising condition under a constant pressure, and an unsteady condition approximating diesel combustion. With the same mole number of oxygen atoms, the DME rich mixtures form much carbon monoxide and methane and very little non-methane HC and PAH, in comparison with ethanol or ethane mixtures. This suggests that the existence of the C-C bond promotes the formation of PAH and soot.
X