Refine Your Search

Search Results

Technical Paper

A Comparative Analysis of Combustion Process, Performance and Exhaust Emissions in Diesel Engine Fueled with Blends of Jatropha Oil-Diesel Fuel and Jatropha Oil-Kerosene

2015-11-17
2015-32-0797
A comparative study was performed by use of blends of Jatropha oil-diesel fuel and Jatropha oil-kerosene in order to investigate the feasibility of direct utilization of Jatropha oil in a DI diesel engine. Experimental results at low load demonstrated that mixing 60 vol.% of Jatropha oil into both diesel fuel and kerosene gave less impact on indicated thermal efficiency, whereas further increase of Jatropha oil deteriorated it. Jatropha oil-kerosene decreased particulate matter compared to Jatropha oil-diesel fuel, although particulate matter increased with the increase of Jatropha oil fraction. At partial load where double injection was applied, mixing 80 vol.% of Jatropha oil gave no significant impact on indicated thermal efficiency, exhaust gas emissions and particulate matter and no significant difference was observed between diesel fuel blends and kerosene blends.
Technical Paper

Premixed Fuel Effect on Ignition and Combustion of Dual Fuel Compression Ignition Engine

2015-09-01
2015-01-1789
Effects of chemical reaction characteristics of premixed fuel were experimentally studied in a dual fuel compression ignition engine using port injection (PI) of gasoline-like component and direct injection (DI) of diesel fuel. Octane number of port injection fuels, direct injection timing and injection amount ratio between PI and DI were swept to assess the interaction between chemical reaction and mixture distribution in a combustion chamber. Chemical kinetic study using multi-zone modeling was also performed in order to explain experimental results under quiescent condition.
Technical Paper

Experimental Validation of a Droplet Vaporization Model for Ethanol-Blended Fuels and its Application to Spray Simulation

2014-10-13
2014-01-2733
Ethanol is a promising alternative to fossil fuels because it can be made from biomass resources that are renewable. In the most cases, however, ethanol is blended with conventional fuels because of the limited amount of production. Ethanol-fuel blends are typically azeotropic and have a unique characteristic in vapor pressure and phase equilibrium, which is different from that of blends composed of simple aliphatic hydrocarbons. The current studies by the authors have developed a numerical vaporization model for ethanol-gasoline blends, which takes into account vapor-liquid equilibrium of azeotrope and high latent heat of vaporization of ethanol, in order to update the authors' multicomponent fuel spray model and to investigate effects of blending ethanol on droplet vaporization processes. In this paper, the developed vaporization model was validated through a comparison with experimentally-observed vaporization rate for single droplets of ethanol-n-heptane blends.
Technical Paper

Exhaust Emission Characteristics of Diesel Engine Using Jatropha Crude Oil Blends

2014-10-13
2014-01-2770
Jatropha biofuel is promising renewal oil to produce biodiesel fuel through transesterification method which is shown in many papers. The ideal diesel alternative fuel obtained considering Jatropha as materials is Fatty Acid Methyl Ester (FAME). It is more desirable than the viewpoint of economical efficiency and CO2 control to operate a diesel engine with Jatropha crude (JC) oil. It is the purpose of this research to examine a possibility of using advantageous JC oil direct use as diesel engine fuel, in consideration of the sustainable production of the Jatropha biofuel in Mozambique. The adaptability to the diesel engine of diesel oil and the mixed fuel of JC was examined. Jatropha crude oil contains phorbol ester (PEs) which is a promoter of cancer. Measurement of the concentration of PEs in an exhaust gas was performed using High Performance Liquid Chromatography (HPLC).
Technical Paper

Numerical Simulation of Evaporating Sprays of Ethanol Fuel Blends

2013-10-14
2013-01-2552
Ethanol is a promising alternative to fossil fuels because it can be produced from biomass resources that are renewable. Due to the amount of production, however, the usage would be limited to blends with other conventional fuels. Ethanol-fuel blends are azeotropic and have unique vaporization characteristics different from blends composed of aliphatic hydrocarbons, so that the present study developed a numerical scheme which takes into account the vapor-liquid equilibrium of azeotrope in order to update the author's original version of the multi-component fuel CFD model and to evaluate the effect of mixing ethanol into gasoline on the evaporation process. The numerical simulation was implemented for evaporating sprays of ethanol-n-heptane blends, which are injected through a single hole nozzle. In addition to the vapor-liquid equilibrium, the effect of the latent heat of vaporization was investigated.
Journal Article

Simultaneous Reduction of Pressure Rise Rate and Emissions in a Compression Ignition Engine by Use of Dual-Component Fuel Spray

2012-10-23
2012-32-0031
Ignition, combustion and emissions characteristics of dual-component fuel spray were examined for ranges of injection timing and intake-air oxygen concentration. Fuels used were binary mixtures of gasoline-like component i-octane (cetane number 12, boiling point 372 K) and diesel fuel-like component n-tridecane (cetane number 88, boiling point 510 K). Mass fraction of i-octane was also changed as the experimental variable. The experimental study was carried out in a single cylinder compression ignition engine equipped with a common-rail injection system and an exhaust gas recirculation system. The results demonstrated that the increase of the i-octane mass fraction with optimizations of injection timing and intake oxygen concentration reduced pressure rise rate and soot and NOx emissions without deterioration of indicated thermal efficiency.
Technical Paper

Effects of Mixedness and Ignition Timings on PCCI Combustion with a Dual Fuel Operation

2011-08-30
2011-01-1768
A dual fuel operation with different reactivity fuels has the possibility of optimizing performance and emissions in premixed charge compression ignition engines by controlling the spatial concentration and distribution of both fuels. In the present study, n-heptane and i-octane were independently injected through two different injectors. In-cylinder pressure analysis and emissions measurement were performed in a compression ignition engine. Injection timings, fuel quantity ratio between the injections were changed for the two cases, in which one fuel was injected using a port fuel injection system while the other was directly injected into the cylinder, in order to drastically vary mixture distributions and ignition timings. In addition, an optical diagnostic was performed in a rapid compression and expansion machine to develop an understanding of the ignition processes of the two mixtures.
Journal Article

A Study on Applicability of Parameter Based on Molecular Structure to Combustion Characteristics

2010-04-12
2010-01-0736
A fundamental understanding of the relationship between chemical composition and combustion quality may provide an improved means of assessing fuel combustion characteristics. As such, a fuel parameter based on the average molecular structure of multi-component fuels, including petroleum-derived fuels and alternative fuels such as bio-fuel, is applied to predict both ignition and anti-knock quality. This parameter is derived from proton nuclear magnetic resonance (1H-NMR) analysis indicating hydrogen type distribution of fuel molecules. The predicted cetane number (PCN) calculated by the equation developed with 1H-NMR in this study shows a good correlation to the cetane number for a wide range of fuels.
Technical Paper

Study on Impinging Diffusion DI Diesel Engine - Numerical Study on Effect of Impinging Part on In-Cylinder Flow -

2003-05-19
2003-01-1780
The effects of the spray impinging part on the in-cylinder airflow were numerically analyzed in the combustion chamber of the impinging diffusion direct injection diesel engine using KIVA-3 code. KIVA-3 code was enhanced to cater the impinging part as an internal obstacle by adopting the virtual droplet method, which is relatively easy to implement. Numerical result shows that the turbulence generation is promoted by the impinging part and is transformed by the squish flow into the piston cavity. The secondary flow is generated beneath the impinging part as well. The secondary flow area increases as the distance between top surface of the impinging part and bottom surface of the cylinder cover increases.
Technical Paper

Japan Clean Air Program (JCAP) - Activities of Combustion Analysis Working Group

2000-06-19
2000-01-1974
The objective of the Combustion Analysis Working Group (WG) in JCAP is prescribed to analyze tail gas emission data obtained by the JCAP Diesel and Gasoline WGs, and to technically explain the origin of the difference in emission levels in terms of the engine, after-treatment, and fuel technologies applied in the measurements. Toward this end, the group firstly constructed the methodology necessary for providing the final outputs, and is carrying out systematical studies such as single-cylinder diesel engine experiments, contractual basis studies on diesel combustion mechanisms. Surveys on the mechanism and performance of after-treatments and the fuel effects on them are also being carried out. This report presents an overview of the methodologies, plans, and some results of the studies.
Technical Paper

Development of a direct-injection diesel engine with mixture formation by fuel spray impingement

2000-06-12
2000-05-0102
The mixture formation by fuel spray impingement (OSKA system) was applied to a small direct-injection diesel engine in order to reduce the wall quenching- induced emissions, i.e., the emissions of THC and soluble organic fractions (SOF). Experiments were carried out using a single-cylinder engine, fitted with various piston cavity geometries, ran under a wide range of compression ratios and fuel injection specifications. The piston cavity was designed as a centrally located reentrant type. The combination of the high squish flow and the weak penetration of the OSKA spray was very effective in reducing harmful emissions. A short ignition delay, under the retarded fuel injection timing, was obtained because of the high compression ratio. The OSKA DI diesel engine showed reduced NOx, smoke, and THC emissions without deterioration of the fuel consumption compared to modern DI diesel engines used in automotive applications.
Technical Paper

Development of an LPG DI Diesel Engine Using Cetane Number Enhancing Additives

1999-10-25
1999-01-3602
A feasibility study of an LPG DI diesel engine has been carried out to study the effectiveness of two selected cetane enhancing additives: Di-tertiary-butyl peroxide (DTBP) and 2-Ethylhexyl nitrate (EHN). When more than either 5 wt% DTBP or 3.5 wt% 2EHN was added to the base fuel (100 % butane), stable engine operation over a wide range of engine loads was possible (BMEPs of 0.03 to 0.60 MPa). The thermal efficiency of LPG fueled operation was found to be comparable to diesel fuel operation at DTBP levels over 5 wt%. Exhaust emissions measurements showed that NOx and smoke levels can be significantly reduced using the LPG+DTBP fuel blend compared to a light diesel fuel at the same experimental conditions. Correlations were derived for the measured ignition delay, BMEP, and either DTBP concentration or cetane number. When propane was added to a butane base fuel, the ignition delay became longer.
Technical Paper

Investigation of Particulate Formation of DI Diesel Engine with Direct Sampling from Combustion Chamber

1997-10-01
972969
This paper is concerned with the formation of Particulate Matter (PM) in direct-injection (DI) diesel engines. A system featuring an electromagnetically actuated sampling valve was used for sampling of gas directly from the combustion chamber. The concentrations of total particulate matter (TPM) and of its two components, the Soluble Organic Fractions (SOF) and the Insoluble Fractions (ISF), were determined at different locations in the combustion chamber at different sampling times (different crank angles). High concentrations of SOF were found at sampling positions along the spray flame axis. The concentrations of SOF and ISF were higher at sampling positions close to the wall than away from the wall. The results suggest that SOF formation is significantly affected by wall quenching. Also, the PM concentrations were much higher in the combustion chamber than in the exhaust.
Technical Paper

Exhaust Emissions of a DI Diesel Engine Fueled with Blends of Biodiesel and Low Sulfur Diesel Fuel

1997-10-01
972998
The addition of soybean methyl ester (SME) to diesel fuel has significantly reduced HC and PM emissions, but it increases the NOx emission slightly when measured with exhaust emission evaluation mode for heavy-duty DI diesel engines or D-13 mode in Japan. Also, under partial load conditions, the SME addition increases the PM emission due to an increase in the SOF emission. However, the addition of lighter fractions or kerosene to diesel fuel reduces NOx and PM emissions but increases HC and CO emissions measured by D-13 mode. In addition, under full load conditions, the lighter fuel seldom reduces PM emission. Therefore, the exhaust emissions emitted from the blends of SME, kerosene, and cetane improver to low sulfur diesel fuel are evaluated using the latest DI diesel engine with a turbo-charger and inter-cooler. The clean fuel reduces over 20% of PM under a wide range of engine conditions including D-13 mode without an increase in NOx, HC, and CO emissions.
Technical Paper

Combustion Observation of OSKA-DH Diesel Engine by High-Speed Photography and Video System

1996-05-01
961159
The OSKA-DH diesel engine employed a unique system (hereafter called OSKA system) which is composed of a single-hole fuel injector, an impinging disk and a re-entrant type combustion chamber. This study is concerned with the combustion observation of both OSKA-DH diesel engine and conventional DI diesel engine by the high-speed photography and video system. This video system enables us to take combustion photographs under the warm-up condition of the engine. From the observation of those photographs, the OSKA-DH engine shows the shorter ignition delay compared with a DI diesel engine and the combustion flame of OSKA-DH diesel engine are concentrated in the center of the combustion chamber and a relatively monotonous flame intensity are observed. THE AUTHORS HAVE DEVELOPED a new type of Direct Injection Stratified Charge Engine called “Direct Fuel Injection Impingement Diffusion Stratified Charge System” (hereafter called OSKA System).
Technical Paper

Effects of Fuel Properties on White Smoke Emission from the Latest Heavy-Duty DI Diesel Engine

1995-10-01
952354
The effects of fuel properties on white smoke emission from the latest DI diesel engine were investigated with a new type of white smoke meter. The new smoke meter could distinguish fuel effects on smoke much more than the conventional PHS meter. The repeatability of the smoke meter was better than that of the PHS meter. Cetane number was the dominant factor for smoke emission. Distillation temperature and composition also affected emission. A nitrate type cetane improver was effective for reducing emission. White smoke was analyzed with GC and HPLC and compounds in white smoke from low cetane number fuel were found almost the same as in fuel. But those from high cetane number fuel consisted of compounds in fuel and many combustion products.
Technical Paper

Effects of Oxygenated Fuel and Cetane Improver on Exhaust Emission from Heavy-Duty DI Diesel Engines

1994-10-01
942023
Smoke emission from single-cylinder DI and IDI diesel engines was shown to strongly depend on oxygen content in fuel regardless of oxygenate molecular structure. Thus, with cetane improver and oxygenate used in combination in a proportion determined from blending properties and potential cost for modern heavy-duty DI diesel engines were assessed. The combined use of nitrate type cetane improver with glycol ether type oxygenate reduced particulate, HC, and CO emission but not that of NOx. Particulate reduction depended on oxygenate content. Oxygenate at less than 5% with cetane improver seldom worsened volume-based fuel economy compared with the base hydrocarbon fuel.
Technical Paper

Effect of Fuel Composition on Exhaust Gas Emissions from DI and DI Impingement Diffusion Combustion Diesel Engines

1994-03-01
941016
The effect of the fuel properties on diesel exhaust emissions was investigated using a commercial DI diesel and a prototype diesel engine with fuel jet impingement(OSKA--DH). The new type of diesel engine has a unique concept for the mixture formation process and is regarded as a clean diesel engine. Four types of fuels were prepared to investigated the effect of fuel properties such as cetane number, composition, oxygen content in fuel and oxygenate type on exhaust emissions for both of the engines. The decrease in cetane number caused an increase in NOx and a decrease in PM for the DI diesel engine because of the long ignition delay. However, in case of the OSKA-DH engine, a decrease in cetane number seldom caused an increase in PM emission. Although NOx and PM from aromatic fuel were higher than those from paraffinic fuel, the fuel effect for the OSKA-DH engine was smaller than that for the DI diesel engine.
Technical Paper

Development of OSKA-DH Diesel Engine Using Fuel Jet Impingement and Diffusion Investigation of Mixture Formation and Combustion

1994-03-01
940667
This study is concerned with development of a new type of diesel engine using the fuel jet impingement (OSKA-DH). Simultaneous reduction of the NOx and smoke emission were demonstrated with single cylinder prototype OSKA-DH engine. As a fundamental study on the mixture formation process, the observation of impinged fuel spray was studied by using a pressurized constant volume vessel. The high-speed combustion photographs of both re-entrant and open type combustion chamber were also taken by using the experimental transparent engine. From the observation of pressurized vessel and high-speed combustion photographs, the mixture formation and combustion was strongly affected by the squish flow velocity. The short ignition delay and faster combustion were observed by the re-entrant type combustion chamber because of high squish speed.
Technical Paper

Effect of Fuel Properties on the Performance of DI Diesel Engine with Fuel Jet Impingement

1992-10-01
922213
The effect of fuel properties on the performance of a new type of diesel engine with fuel jet impingement was investigated in comparison with the performance of a DI diesel engine. The new engine has a unique mixture formation process, but the details have not been well investigated. Therefore, the combustion processes of the engine was observed with a transparent piston engine and a high-speed camera system. Observations of the combustion process showed that after impingement, the fuel diffused almost symmeterically into the shape of a disk. Ignition usually started near the cavity wall and extented toward the center of the combustion chamber. The flame appeared to extend from the inside cavity radius to the outside cavity radius because of the strong squish flow. The fuel consisted of petroleum derived samples with a wide range of cetane number and viscosity. High cetane number resulted in reduced NOx mass emission from both engines, but an increased amount of smoke was emitted.
X