Refine Your Search

Topic

Search Results

Technical Paper

A Feature-Based Responses Prediction Method for Simplified CAE Models

2019-04-02
2019-01-0516
In real-world engineering problems, the method of model simplification is usually adopted to increase the simulation efficiency. Nevertheless, the obtained simulation results are commonly with low accuracy. To research the impact from model simplification on simulation results, a feature-based predictive method for simplified CAE model analysis is proposed in this paper. First, the point clouds are used to represent the features of simplified model. Then the features are quantified according to the factors of position for further analysis. A formulated predictive model is then established to evaluate the responses of interest for different models, which are specified by the employed simplification methods. The proposed method is demonstrated through an engineering case. The results suggest that the predictive model can facilitate the analysis procedure to reduce the cost in CAE analysis.
Technical Paper

A Dynamic Local Trajectory Planning and Tracking Method for UGV Based on Optimal Algorithm

2019-04-02
2019-01-0871
UGV (Unmanned Ground Vehicle) is gaining increasing amounts of attention from both industry and academic communities in recent years. Local trajectory planning is one of the most important parts of designing a UGV. However, there has been little research into local trajectory planning and tracking, and current research has not considered the dynamic of the surrounding environment. Therefore, we propose a dynamic local trajectory planning and tracking method for UGV driving on the highway in this paper. The method proposed in this paper can make the UGV travel from the navigation starting point to the navigation end point without collision on both straight and curve road. The key technology for this method is trajectory planning, trajectory tracking and trajectory update signal generation. Trajectory planning algorithm calculates a reference trajectory satisfying the demands of safety, comfort and traffic efficiency.
Technical Paper

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

2019-04-02
2019-01-1224
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks.
Technical Paper

An Integrated Deformed Surfaces Comparison Based Validation Framework for Simplified Vehicular CAE Models

2018-04-03
2018-01-1380
Significant progress in modeling techniques has greatly enhanced the application of computer simulations in vehicle safety. However, the fine-meshed impact models are usually complex and take lots of computational resources and time to conduct design optimization. Hence, to develop effective methods to simplify the impact models without losing necessary accuracy is of significant meaning in vehicle crashworthiness analysis. Surface deformation is frequently regarded as a critical factor to be measured for validating the accuracy of CAE models. This paper proposes an integrated validation framework to evaluate the inconsistencies between the deformed surfaces of the original model and simplified model. The geometric features and curvature information of the deformed surfaces are firstly obtained from crash simulation. Then, the magnitude and shape discrepancy information are integrated into the validation framework as the surface comparison objects.
Technical Paper

A Maximum Incompatibility Constrained Collaborative Optimization Method for Vehicle Weight Reduction

2018-04-03
2018-01-0585
Collaborative optimization is an important design tool in complex vehicle system engineering. However, there are many problems yet to be resolved when applying the conventional collaborative optimization method in vehicle body weight reduction, such as convergence difficulties and low optimization efficiency. To solve these problems, a maximum incompatibility constrained collaborative optimization method is proposed in the paper. First, the 1-norm equality constraints expression of the system level is used to replace the traditional 2-norm inequality constraints. Then, a maximum incompatibility is selected from modified inequality constraints to improve optimization efficiency. Finally, an overall compatibility constraint is introduced to decrease the influence caused by the initial point. A mathematical example is used to verify the effectiveness and stability of the proposed method.
Technical Paper

A Data Mining and Optimization Process with Shape and Size Design Variables Consideration for Vehicle Application

2018-04-03
2018-01-0584
This paper presents a design process with data mining technique and advanced optimization strategy. The proposed design method provides insights in three aspects. First, data mining technique is employed for analysis to identify key factors of design variables. Second, relationship between multiple types of size and shape design variables and performance responses can be analyzed. Last but not least, design preference can be initialized based on data analysis to provide priori guidance for the starting design points of optimization algorithm. An exhaust system design problem which largely contributes to the improvement of vehicular Noise, Vibration and Harshness (NVH) performance is employed for the illustration of the process. Two types of design parameters, structural variable (gauge of component) and layout variable (hanger location), are considered in the studied case.
Technical Paper

Research on the FE Modeling and Impact Injury of Obese 10-YO Children Based on Mesh Morphing Methodology

2018-04-03
2018-01-0540
In order to improve the comprehensive protection for children with variable shapes and sizes, this paper conducted studies on the impact injury for obese children based on a 10-YO finite element model. Some specific geometrics on the body surface were firstly acquired by the combination of pediatric anthropometric database and generator of body (GEBOD). A Radial Basis Function (RBF) based mesh morphing technique was then used to modify the original standard size FE model using the obtained geometrics. The morphed FE model was validated based on the experimental data of frontal sled test and chest-abdomen impact test. The effects of obesity on injury performances were analyzed through simplified high-speed and low-speed crash simulations.
Technical Paper

An Improved K-Means Based Design Domain Recognition Method for Automotive Structural Optimization

2018-04-03
2018-01-1032
Design optimization methods are widely used for weight reduction subjecting to multiple constraints in automotive industry. One of the major challenges is to search for the optimal design in an efficient manner. For complex design and optimization problems such as automotive applications, optimization algorithms work better if the initial searching points are within or close to feasible domains. In this paper, the k-means clustering algorithm is exploited to identify sets of reduced feasible domains from the original design space. Within the reduced feasible domains, the optimal design can be obtained efficiently. A mathematical example and a vehicle body structure design problem are used to demonstrate the effectiveness of the proposed method.
Technical Paper

Automotive Crashworthiness Design Optimization Based on Efficient Global Optimization Method

2018-04-03
2018-01-1029
Finite element (FE) models are commonly used for automotive crashworthiness design. However, even with increasing speed of computers, the FE-based simulation is still too time-consuming when simulating the complex dynamic process such as vehicle crashworthiness. To improve the computational efficiency, the response surface model, as the surrogate of FE model, has been widely used for crashworthiness optimization design. Before introducing the surrogate model into the design optimization, the surrogate should satisfy the accuracy requirements. However, the bias of surrogate model is introduced inevitably. Meanwhile, it is also very difficult to decide how many samples are needed when building the high fidelity surrogate model for the system with strong nonlinearity. In order to solve the aforementioned problems, the application of a kind of surrogate optimization method called Efficient Global Optimization (EGO) is proposed to conduct the crashworthiness design optimization.
Technical Paper

Investigation of the Samples Size Effects on Hybrid Surrogate Model Component Surrogates for Crashworthiness Design

2018-04-03
2018-01-1028
Surrogate model based design optimization has been widely adopted in automotive industry. Hybrid surrogate model with multiple component surrogates is considered to be a better choice when simulating highly non-linear responses in vehicle crashworthiness analysis. Currently, the number of component surrogates has to be decided before-hand when constructing of a hybrid surrogate model. This paper conducts a comparative study on the performances of three popular hybrid modeling methods including heuristic computation strategy, and two kinds of optimal weighted surrogates. The effects of samples size on the number of individual surrogates that should be included into the final hybrid surrogate models for crashworthiness responses are investigated. Different hybrid modeling techniques and multiple validation criteria are evaluated. Some observations and conclusions on the selection of component surrogates in hybrid surrogate modeling are given in the end.
Technical Paper

Multi Objective Optimization of Vehicle Crashworthiness Based on Combined Surrogate Models

2017-03-28
2017-01-1473
Several surrogate models such as response surface model and radial basis function and Kriging models are developed to speed the optimization design of vehicle body and improve the vehicle crashworthiness. The error analysis is used to investigate the accuracy of different surrogate models. Furthermore, the Kriging model is used to fit the model of B-pillar acceleration and foot well intrusion. The response surface model is used to fit the model of the entire vehicle mass. These models are further used to calculate the acceleration response in B-pillar, foot well intrusion and vehicle mass instead of the finite element model in the optimization design of vehicle crashworthiness. A multi-objective optimization problem is formulated in order to improve vehicle safety performance and keep its light weight. The particle swarm method is used to solve the proposed multi-objective optimization problem.
Technical Paper

Design Optimization of Vehicle Body NVH Performance Based on Dynamic Response Analysis

2017-03-28
2017-01-0440
Noise-vibration-harshness (NVH) design optimization problems have become major concerns in the vehicle product development process. The Body-in-White (BIW) plays an important role in determining the dynamic characteristics of vehicle system during the concept design phase. Finite Element (FE) models are commonly used for vehicle design. However, even though the speed of computers has been increased a lot, the simulation of FE models is still too time-consuming due to the increase in model complexity. For complex systems, like vehicle body structures, the numerous design variables and constraints make the FE simulations based optimization design inefficient. This calls for the development of a systematic and efficient approach that can effectively perform optimization to further improve the NVH performance, while satisfying the stringent design constraints.
Journal Article

A Comprehensive Validation Method with Surface-Surface Comparison for Vehicle Safety Applications

2017-03-28
2017-01-0221
Computer Aided Engineering (CAE) models have proven themselves to be efficient surrogates of real-world systems in automotive industries and academia. To successfully integrate the CAE models into analysis process, model validation is necessarily required to assess the models’ predictive capabilities regarding their intended usage. In the context of model validation, quantitative comparison which considers specific measurements in real-world systems and corresponding simulations serves as a principal step in the assessment process. For applications such as side impact analysis, surface deformation is frequently regarded as a critical factor to be measured for the validation of CAE models. However, recent approaches for such application are commonly based on graphical comparison, while researches on the quantitative metric for surface-surface comparison are rarely found.
Journal Article

A Corrected Surrogate Model Based Multidisciplinary Design Optimization Method under Uncertainty

2017-03-28
2017-01-0256
Vehicle weight reduction has become one of the most crucial problems in the automotive industry because that increasingly stringent regulatory requirements, such as fuel economy and environmental protection, must be met. The lightweight design needs to consider various vehicle attributes, including crashworthiness and stiffness. Therefore, in essence, the vehicle weight reduction is a typical Multidisciplinary Design Optimization problem. To improve the computational efficiency, meta-models have been widely used as the surrogate of FE model in the multidisciplinary optimization of large structures. However, these surrogate models introduce additional sources of uncertainties, such as model uncertainty, which may lead to the poor accuracy in prediction. In this paper, a method of corrected surrogate model based multidisciplinary design optimization under uncertainty is proposed to incorporate the uncertainties introduced by both meta-models and design variables.
Technical Paper

A Similarity Evaluation Metric for Mesh Based CAE Model Simplification and Its Application on Vehicle

2017-03-28
2017-01-1332
To obtain higher efficiency in analysis process, simplification methods for computer-aided engineering (CAE) models are required in engineering. Current model simplification methods can meet certain precision and efficiency requirement, but these methods mainly concentrate on model features while ignoring model mesh which is also critical to efficiency of the analysis process and preciseness of the results. To address such issues, an integrated mesh simplification and evaluation process is proposed in this paper. The mesh is simplified to fewer features (e.g. faces, edges, and vertices) through edge collapsing based on quadric error metric. Then curvatures and normal vectors which are the objects to be evaluated are extracted from the original and simplified models for comparison. To obtain accurate results, the geometric information of mesh nodes and elements are both considered in this evaluation process. The proposed method is implemented on a vehicle crash test.
Technical Paper

Data Mining Based Feasible Domain Recognition for Automotive Structural Optimization

2016-04-05
2016-01-0268
Computer modeling and simulation have significantly facilitated the efficiency of product design and development in modern engineering, especially in the automotive industry. For the design and optimization of car models, optimization algorithms usually work better if the initial searching points are within or close to a feasible domain. Therefore, finding a feasible design domain in advance is beneficial. A data mining technique, Iterative Dichotomizer 3 (ID3), is exploited in this paper to identify sets of reduced feasible design domains from the original design space. Within the reduced feasible domains, optimal designs can be efficiently obtained while releasing computational burden in iterations. A mathematical example is used to illustrate the proposed method. Then an industrial application about automotive structural optimization is employed to demonstrate the proposed methodology. The results show the proposed method’s potential in practical engineering.
Technical Paper

Quantification of Meta-model and Parameter Uncertainties in Robust Design

2016-04-05
2016-01-0279
To reduce the computational time of the iterations in robust design, meta-models are frequently utilized to approximate time-consuming computer aided engineering models. However, the bias of meta-model uncertainty largely affects the robustness of the prediction results, this uncertainty need to be addressed before design optimization. In this paper, an efficient uncertainty quantification method considering both model and parameter uncertainties is proposed. Firstly, the uncertainty of parameters are characterized by statistical distributions. The Bayesian inference is then performed to improve the predictive capabilities of the surrogate models, meanwhile, the model uncertainty can also be quantified in the form of variance. Monte Carlo sampling is finally utilized to quantify the compound uncertainties of model and parameter. Furthermore, the proposed uncertainty quantification method is used for robust design.
Technical Paper

Bayesian Classifier Based Validation Method for Multivariate Systems

2016-04-05
2016-01-0284
Simulation models based design has become the common practice in automotive product development. Before applying these models in practice, model validation needs to be conducted to assess the validity of the models by comparing model predictions with experimental observations. In the validation process, it is vital to develop appropriate validation metrics for intended applications. When dealing with multivariate systems, comparisons between model predictions and test data with multiple responses would lead to conflicting decisions. To address this issue, this paper proposed a Bayesian classifier based validation method. With the consideration of both error rate and confidence in hypothesis testing, Bayesian classifier is developed for decision making. The process of validation is implemented on a real-world vehicle design case. The results show the proposed method’s potential in practical application.
Journal Article

An Integrated Validation Method for Nonlinear Multiple Curve Comparisons

2016-04-05
2016-01-0288
In automobile industry, computational models built to predict the performances of the prototype vehicles are on the rise. To assess the validity or predictive capability of the model for its intended usage, validation activities are conducted to compare computational model outputs with test measurements. Validation becomes difficult when dealing with dynamic systems which often involve multiple functional responses, and the complex characteristics need to be appropriately considered. Many promising data analysis tools and metrics were previously developed to handle data correlation and evaluate the errors in magnitude, phase shift, and shape. However, these methods show their limitations when dealing with nonlinear multivariate dynamic systems. In this paper, kernel function based projection is employed to transform the nonlinear data into linear space, followed by the regular principal component analysis (PCA) based data processing.
Technical Paper

The Design Optimization of Vehicle Interior Noise through Structural Modification and Constrained Layer Damping Treatment

2015-04-14
2015-01-0663
The design optimization of vehicle body structure is addressed to reduce interior noise and improve customer satisfaction in this paper. The structural-acoustic model is developed by using finite element method. The frequency response of structural-acoustic system is computed by modal analysis method. The optimization problem is constructed to minimize the sound pressure level in the right ear of the driver. The sensitivity analysis is carried out to find the key panels to be optimized as design variables and improve the efficiency of optimization computation. Response Surface Method (RSM) is utilized to develop the surrogate model and optimize the vehicle Noise Vehicle and Harshness (NVH) behavior. A 9dB reduction of sound pressure level (SPL) in the right era of the driver is obtained through geometric optimization for panels. Furthermore, the topology optimization model is developed to search the optimal layout of constrained layer damping treatments in the front floor.
X