Refine Your Search


Search Results

Technical Paper

Real-Time Reinforcement Learning Optimized Energy Management for a 48V Mild Hybrid Electric Vehicle

Energy management of hybrid vehicle has been a widely researched area. Strategies like dynamic programming (DP), equivalent consumption minimization strategy (ECMS), Pontryagin’s minimum principle (PMP) are well analyzed in literatures. However, the adaptive optimization work is still lacking, especially for reinforcement learning (RL). In this paper, Q-learning, as one of the model-free reinforcement learning method, is implemented in a mid-size 48V mild parallel hybrid electric vehicle (HEV) framework to optimize the fuel economy. Different from other RL work in HEV, this paper only considers vehicle speed and vehicle torque demand as the Q-learning states. SOC is not included for the reduction of state dimension. This paper focuses on showing that the EMS with non-SOC state vectors are capable of controlling the vehicle and outputting satisfactory results. Electric motor torque demand is chosen as action.
Technical Paper

A Heuristic Supervisory Controller for a 48V Hybrid Electric Vehicle Considering Fuel Economy and Battery Aging

Most studies on supervisory controllers of hybrid electric vehicles consider only fuel economy in the objective function. Taking into consideration the importance of the energy storage system health and its impact on the vehicle’s functionality, cost, and warranty, recent studies have included battery degradation as the second objective function by proposing different energy management strategies and battery life estimation methods. In this paper, a rule-based supervisory controller is proposed that splits the torque demand based not only on fuel consumption, but also on the battery capacity fade using the concept of severity factor. For this aim, the severity factor is calculated at each time step of a driving cycle using a look-up table with three different inputs including c-rate, working temperature, and state of charge of the battery. The capacity loss of the battery is then calculated using a semi-empirical capacity fade model.
Technical Paper

Computationally Efficient Li-Ion Battery Aging Model for Hybrid Electric Vehicle Supervisory Control Optimization

This paper presents the development of an electrochemical aging model of LiFePO4-Graphite battery based on single particle (SP) model. Solid electrolyte interphase (SEI) growth is considered as the aging mechanism. It is intended to provide both sufficient fidelity and computational efficiency required for integration within the HEV power management optimization framework. The model enables assessment of the battery aging rate by considering instantaneous lithium ion surface concentration rather than average concentration, thus enhancing the fidelity of predictions. In addition, an approximate analytical method is applied to speed up the calculation while preserving required accuracy. Next, this aging model are illustrated two applications. First is hybrid electric powertrain system model integration and simulation.
Journal Article

Optimal Supervisory Control of the Series HEV with Consideration of Temperature Effects on Battery Fading and Cooling Loss

This paper develops a methodology to optimize the supervisory controller for a heavy-duty series hybrid electric vehicle, with consideration of battery aging and cooling loss. Electrochemistrybased battery aging model is integrated into vehicle model. The side reaction, reductive electrolyte decomposition, is modeled to determine battery aging rate, and the thermal effect on this reaction rate is considered by Arrhenius Law. The resulting capacity and power fading is included in the system-level study. Sensitivity analysis shows that battery aging could cause fuel economy loss by 5.9%, and increasing temperature could improve fuel economy at any given state-of-health, while accelerating battery aging. Stochastic dynamic programming algorithm is applied to a modeled system to handle the tradeoff between two objectives: maximizing fuel economy and minimizing battery aging.
Journal Article

Model-Based Estimation of Vehicle Aerodynamic Drag and Rolling Resistance

Commercial vehicles transport the majority of the inland freight in US and a significant number of passengers. They are large fuel consumers as they operate a large number of hours per day, pulling heavy loads. The increasing fuel price and the Green House Gas emission regulation have provided a strong impetus for new technologies capable of improving the commercial vehicle fuel economy. Among others, optimized powertrain control can improve the vehicle fuel economy, particularly if it is based on accurate information about the instantaneous load demand. Furthermore, model-based online vehicle parameter estimator is critical for implementation of an adaptive vehicle controller. While vehicle mass estimation has been successfully demonstrated, rolling resistance and aerodynamic drag estimation has not been fully explored yet. This paper examines this problem using model-based approach with a supervisory data extraction scheme.
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Journal Article

Quantification of Drive Cycle's Rapid Speed Fluctuations Using Fourier Analysis

This paper presents a new way to evaluate vehicle speed profile aggressiveness, quantify it from the perspective of the rapid speed fluctuations, and assess its impact on vehicle fuel economy. The speed fluctuation can be divided into two portions: the large-scale low frequency speed trace which follows the ongoing traffic and road characteristics, and the small-scale rapid speed fluctuations normally related to the driver's experience, style and ability to anticipate future events. The latter represent to some extent the driver aggressiveness and it is well known to affect the vehicle energy consumption and component duty cycles. Therefore, the rapid speed fluctuations are the focus of this paper. Driving data collected with the GPS devices are widely adopted for study of real-world fuel economy, or the impact on electrified vehicle range and component duty cycles.
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Technical Paper

Deaeration Device Study for a Hydraulic Hybrid Vehicle

This paper investigates the development of a deaeration device to remove nitrogen from the hydraulic fluid in hydraulic hybrid vehicles (HHVs). HHVs, which use accumulators to store and recycle energy, can significantly reduce vehicle emissions in urban delivery vehicles. In accumulators, nitrogen behind a piston cylinder or inside a bladder pressurizes an incompressible fluid. The permeation of the nitrogen through the rubber bladder into the hydraulic fluid limits the efficiency and reliability of the HHV system, since the pressure drop in the hydraulic fluid can in turn cause cavitation on pump components and excessive noise in the system. The nitrogen bubbles within the hydraulic fluid may be removed through the employment of commercial bubble eliminators if the bubbles are larger than a certain threshold. However, gas is also dissolved within the hydraulic fluid; therefore, novel design is necessary for effective deaeration in the fluid HHV circuit.
Technical Paper

Real-World Driving Pattern Recognition for Adaptive HEV Supervisory Control: Based on Representative Driving Cycles in Midwestern US

Impact of driving patterns on fuel economy is significant in hybrid electric vehicles (HEVs). Driving patterns affect propulsion and braking power requirement of vehicles, and they play an essential role in HEV design and control optimization. Driving pattern conscious adaptive strategy can lead to further fuel economy improvement under real-world driving. This paper proposes a real-time driving pattern recognition algorithm for supervisory control under real-world conditions. The proposed algorithm uses reference real-world driving patterns parameterized from a set of representative driving cycles. The reference cycle set consists of five synthetic representative cycles following the real-world driving distance distribution in the US Midwestern region. Then, statistical approaches are used to develop pattern recognition algorithm. Driving patterns are characterized with four parameters evaluated from the driving cycle velocity profiles.
Journal Article

Assessing the Regeneration Potential for a Refuse Truck Over a Real-World Duty Cycle

The majority of a refuse truck collection cycle consists of frequent Stop and Go events while moving from one household to another. The nature of this driving mission creates the opportunity to reduce fuel consumption by capturing and re-using the kinetic energy normally wasted during braking. This paper includes the evaluation of the brake energy available for regeneration from the conventional drivetrain; the description of the impact of the vehicle variable mass and auxiliary loads; a model validation over a real-world duty cycle; and the potential for an increase in fuel efficiency through hybridization of the drivetrain. The Hydraulic Hybrid (HH) technology is selected since it has a large power density.
Journal Article

Optimization of Rule-Based Control Strategy for a Hydraulic-Electric Hybrid Light Urban Vehicle Based on Dynamic Programming

This paper presents a low-cost path for extending the range of small urban pure electric vehicles by hydraulic hybridization. Energy management strategies are investigated to improve the electric range, component efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region of DC motor and the hydraulic pump/motor. Then, Dynamic Programming (DP) is used as a benchmark to find the optimal control trajectories for DC motor and Hydraulic Pump/Motor. Implementable rules are derived by studying the optimal control trajectories from DP. With new improved rules implemented, simulation results show electric range improvement due to increased battery usable capacity and higher average DC motor operating efficiency.
Journal Article

Frequency Domain Power Distribution Strategy for Series Hybrid Electric Vehicles

Electrification and hybridization have great potential for improving fuel economy and reducing visual signature or soot emissions in military vehicles. Specific challenges related to military applications include severe duty cycles, large and uncertain energy flows through the system and high thermal loads. A novel supervisory control strategy is proposed to simultaneously mitigate severe engine transients and to reduce high electric current in the battery without oversizing the battery. The described objectives are accomplished by splitting the propulsion power demand through filtering in the frequency domain. The engine covers only low frequency power demand profile while the battery covers high frequency components. In the proposed strategy, the separation filter is systematically designed to identify different frequency components with the consideration of fuel consumption, aggressive engine transients, and battery electric loads.
Journal Article

Impact of Model-Based Lithium-Ion Battery Control Strategy on Battery Sizing and Fuel Economy in Heavy-Duty HEVs

Electrification and hybridization show great potential for improving fuel economy and reducing emission in heavy-duty vehicles. However, high battery cost is unavoidable due to the requirement for large batteries capable of providing high electric power for propulsion. The battery size and cost can be reduced with advanced battery control strategies ensuring safe and robust operation covering infrequent extreme conditions. In this paper, the impact of such a battery control strategy on battery sizing and fuel economy is investigated under various military and heavy-duty driving cycles. The control strategy uses estimated Li-ion concentration information in the electrodes to prevent battery over-charging and over-discharging under aggressive driving conditions. Excessive battery operation is moderated by adjusting allowable battery power limits through the feedback of electrode-averaged Li-ion concentration estimated by an extended Kalman filter (EKF).
Technical Paper

Self-Learning Neural Controller for Hybrid Power Management Using Neuro-Dynamic Programming

A supervisory controller strategy for a hybrid vehicle coordinates the operation of the two power sources onboard of a vehicle to maximize objectives like fuel economy. In the past, various control strategies have been developed using heuristics as well as optimal control theory. The Stochastic Dynamic Programming (SDP) has been previously applied to determine implementable optimal control policies for discrete time dynamic systems whose states evolve according to given transition probabilities. However, the approach is constrained by the curse of dimensionality, i.e. an exponential increase in computational effort with increase in system state space, faced by dynamic programming based algorithms. This paper proposes a novel approach capable of overcoming the curse of dimensionality and solving policy optimization for a system with very large design state space.
Technical Paper

Energy Management Options for an Electric Vehicle with Hydraulic Regeneration System

Energy security and climate change challenges provide a strong impetus for investigating Electric Vehicle (EV) concepts. EVs link two major infrastructures, the transportation and the electric power grid. This provides a chance to bring other sources of energy into transportation, displace petroleum and, with the right mix of power generation sources, reduce CO₂ emissions. The main obstacles for introducing a large numbers of EVs are cost, battery weight, and vehicle range. Battery health is also a factor, both directly and indirectly, by introducing limits on depth of discharge. This paper considers a low-cost path for extending the range of a small urban EV by integrating a parallel hydraulic system for harvesting and reusing braking energy. The idea behind the concept is to avoid replacement of lead-acid or small Li-Ion batteries with a very expensive Li-Ion pack, and instead use a low-cost hydraulic system to achieve comparable range improvements.
Journal Article

Hybrid Electric Vehicle Powertrain and Control Strategy Optimization to Maximize the Synergy with a Gasoline HCCI Engine

This simulation study explores the potential synergy between the HCCI engine system and three hybrid electric vehicle (HEV) configurations, and proposes the supervisory control strategy that maximizes the benefits of combining these two technologies. HCCI operation significantly improves fuel efficiency at part load, while hybridization aims to reduce low load/low speed operation. Therefore, a key question arises: are the effects of these two technologies additive or overlapping? The HEV configurations include two parallel hybrids with varying degrees of electrification, e.g. with a 5kW integrated starter/motor (“Mild”) and with a 10 kW electric machine (“Medium”), and a power-split hybrid. The engine is a dual-mode, SI-HCCI system and the engine map reflects the impact of HCCI on brake specific fuel consumption.
Technical Paper

Simulation Based Assessment of Plug-in Hybrid Electric Vehicle Behavior During Real-World 24-Hour Missions

This paper proposes a simulation based methodology to assess plug-in hybrid vehicle (PHEV) behavior over 24-hour periods. Several representative 24-hour missions comprise naturalistic cycle data and information about vehicle resting time. The data were acquired during Filed Operational Tests (FOT) of a fleet of passenger vehicles carried out by the University of Michigan Transportation Research Institute (UMTRI) for safety research. Then, PHEV behavior is investigated using a simulation with two different charging scenarios: (1) Charging overnight; (2) Charging whenever possible. Charging/discharging patterns of the battery as well as trends of charge depleting (CD) and charge sustaining (CS) modes at each scenario were assessed. Series PHEV simulation is generated using Powertrain System Analysis Toolkit (PSAT) developed by Argonne National Laboratory (ANL) and in-house Matlab codes.
Technical Paper

Characterization of the Fluid Deaeration Device for a Hydraulic Hybrid Vehicle System

The attractiveness of the hydraulic hybrid concept stems from the high power density and efficiency of the pump/motors and the accumulator. This is particularly advantageous in applications to heavy vehicles, as high mass translates into high rates of energy flows through the system. Using dry case hydraulic pumps further improves the energy conversion in the system, as they have 1-4% better efficiency than traditional wet-case pumps. However, evacuation of fluid from the case introduces air bubbles and it becomes imperative to address the deaeration problems. This research develops a bubble elimination efficiency testing apparatus (BEETA) to establish quantitative results characterizing bubble removal from hydraulic fluid in a cyclone deaeration device. The BEETA system mixes the oil and air according to predetermined ratio, passes the mixture through a cyclone deaeration device, and then measures the concentration of air in the exiting fluid.
Technical Paper

Simulation Study of a Series Hydraulic Hybrid Propulsion System for a Light Truck

The global energy situation, the dependence of the transportation sector on fossil fuels, and a need for rapid response to the global warming challenge, provide a strong impetus for development of fuel efficient vehicle propulsion. The task is particularly challenging in the case of trucks due to severe weight/size constraints. Hybridization is the only approach offering significant breakthroughs in near and mid-term. In particular, the series configuration decouples the engine from the wheels and allows full flexibility in controlling the engine operation, while the hydraulic energy conversion and storage provides exceptional power density and efficiency. The challenge stems from a relatively low energy density of the hydraulic accumulator, and this provides part of the motivation for a simulation-based approach to development of the system power management. The vehicle is based on the HMMWV platform, a 4×4 off-road truck weighing 5112 kg.