Refine Your Search

Topic

Author

Search Results

Technical Paper

Synthesis of Statistically Representative Driving Cycle for Tracked Vehicles

2023-04-11
2023-01-0115
Drive cycles are a core piece of vehicle development testing methodology. The control and calibration of the vehicle is often tuned over drive cycles as they are the best representation of the real-world driving the vehicle will see during deployment. To obtain general performance numerous drive cycles must be generated to ensure final control and calibration avoids overfitting to the specifics of a single drive cycle. When real-world driving cycles are difficult to acquire methods can be used to create statistically similar synthetic drive cycles to avoid the overfitting problem. This subject has been well addressed within the passenger vehicle domain but must be expanded upon for utilization with tracked off-road vehicles. Development of hybrid tracked vehicles has increased this need further. This study shows that turning dynamics have significant influence on the vehicle power demand and on the power demand on each individual track.
Journal Article

Thermodynamic Modeling of Military Relevant Diesel Engines with 1-D Finite Element Piston Temperature Estimation

2023-04-11
2023-01-0103
In military applications, diesel engines are required to achieve high power outputs and therefore must operate at high loads. This high load operation leads to high piston component temperatures and heat rejection rates limiting the packaged power density of the powertrain. To help predict and understand these constraints, as well as their effects on performance, a thermodynamic engine model coupled to a finite element heat conduction solver is proposed and validated in this work. The finite element solver is used to calculate crank angle resolved, spatially averaged piston temperatures from in-cylinder heat transfer calculations. The calculated piston temperatures refine the heat transfer predictions as well requiring iteration between the thermodynamic model and finite element solver.
Technical Paper

Effects of Port Angle on Scavenging of an Opposed Piston Two-Stroke Engine

2022-03-29
2022-01-0590
Opposed-piston 2-stroke (OP-2S) engines have the potential to achieve higher thermal efficiency than a typical diesel engine. However, the uniflow scavenging process is difficult to control over a wide range of speeds and loads. Scavenging performance is highly sensitive to pressure dynamics, port timings, and port design. This study proposes an analysis of the effects of port vane angle on the scavenging performance of an opposed-piston 2-stroke engine via simulation. A CFD model of a three-cylinder opposed-piston 2-stroke was developed and validated against experimental data collected by Achates Power Inc. One of the three cylinders was then isolated in a new model and simulated using cycle-averaged and cylinder-averaged initial/boundary conditions. This isolated cylinder model was used to efficiently sweep port angles from 12 degrees to 29 degrees at different pressure ratios.
Technical Paper

Real-Time Reinforcement Learning Optimized Energy Management for a 48V Mild Hybrid Electric Vehicle

2019-04-02
2019-01-1208
Energy management of hybrid vehicle has been a widely researched area. Strategies like dynamic programming (DP), equivalent consumption minimization strategy (ECMS), Pontryagin’s minimum principle (PMP) are well analyzed in literatures. However, the adaptive optimization work is still lacking, especially for reinforcement learning (RL). In this paper, Q-learning, as one of the model-free reinforcement learning method, is implemented in a mid-size 48V mild parallel hybrid electric vehicle (HEV) framework to optimize the fuel economy. Different from other RL work in HEV, this paper only considers vehicle speed and vehicle torque demand as the Q-learning states. SOC is not included for the reduction of state dimension. This paper focuses on showing that the EMS with non-SOC state vectors are capable of controlling the vehicle and outputting satisfactory results. Electric motor torque demand is chosen as action.
Technical Paper

A Look-Ahead Model Predictive Optimal Control Strategy of a Waste Heat Recovery-Organic Rankine Cycle for Automotive Application

2019-04-02
2019-01-1130
The Organic Rankine Cycle (ORC) has proven to be a promising technology for Waste Heat Recovery (WHR) systems in heavy duty diesel engine applications. However, due to the highly transient heat source, controlling the working fluid flow through the ORC system is a challenge for real time application. With advanced knowledge of the heat source dynamics, there is potential to enhance power optimization from the WHR system through predictive optimal control. This paper proposes a look-ahead control strategy to explore the potential of increased power recovery from a simulated WHR system. In the look-ahead control, the future vehicle speed is predicted utilizing road topography and V2V connectivity. The forecasted vehicle speed is utilized to predict the engine speed and torque, which facilitates estimation of the engine exhaust conditions used in the ORC control model.
Technical Paper

A Heuristic Supervisory Controller for a 48V Hybrid Electric Vehicle Considering Fuel Economy and Battery Aging

2019-01-15
2019-01-0079
Most studies on supervisory controllers of hybrid electric vehicles consider only fuel economy in the objective function. Taking into consideration the importance of the energy storage system health and its impact on the vehicle’s functionality, cost, and warranty, recent studies have included battery degradation as the second objective function by proposing different energy management strategies and battery life estimation methods. In this paper, a rule-based supervisory controller is proposed that splits the torque demand based not only on fuel consumption, but also on the battery capacity fade using the concept of severity factor. For this aim, the severity factor is calculated at each time step of a driving cycle using a look-up table with three different inputs including c-rate, working temperature, and state of charge of the battery. The capacity loss of the battery is then calculated using a semi-empirical capacity fade model.
Journal Article

Transient Power Optimization of an Organic Rankine Cycle Waste Heat Recovery System for Heavy-Duty Diesel Engine Applications

2017-03-28
2017-01-0133
This paper presents the transient power optimization of an organic Rankine cycle waste heat recovery (ORC-WHR) system operating on a heavy-duty diesel (HDD). The optimization process is carried on an experimentally validated, physics-based, high fidelity ORC-WHR model, which consists of parallel tail pipe and EGR evaporators, a high pressure working fluid pump, a turbine expander, etc. Three different ORC-WHR mixed vapor temperature (MVT) operational strategies are evaluated to optimize the ORC system net power: (i) constant MVT; (ii) constant superheat temperature; (iii) fuzzy logic superheat temperature based on waste power level. Transient engine conditions are considered in the optimization. Optimization results reveal that adaptation of the vapor temperature setpoint based on evaporation pressure strategy (ii) provides 1.1% mean net power (MNP) improvement relative to a fixed setpoint strategy (i).
Technical Paper

Computationally Efficient Li-Ion Battery Aging Model for Hybrid Electric Vehicle Supervisory Control Optimization

2017-03-28
2017-01-0274
This paper presents the development of an electrochemical aging model of LiFePO4-Graphite battery based on single particle (SP) model. Solid electrolyte interphase (SEI) growth is considered as the aging mechanism. It is intended to provide both sufficient fidelity and computational efficiency required for integration within the HEV power management optimization framework. The model enables assessment of the battery aging rate by considering instantaneous lithium ion surface concentration rather than average concentration, thus enhancing the fidelity of predictions. In addition, an approximate analytical method is applied to speed up the calculation while preserving required accuracy. Next, this aging model are illustrated two applications. First is hybrid electric powertrain system model integration and simulation.
Journal Article

Optimal Supervisory Control of the Series HEV with Consideration of Temperature Effects on Battery Fading and Cooling Loss

2016-04-05
2016-01-1239
This paper develops a methodology to optimize the supervisory controller for a heavy-duty series hybrid electric vehicle, with consideration of battery aging and cooling loss. Electrochemistrybased battery aging model is integrated into vehicle model. The side reaction, reductive electrolyte decomposition, is modeled to determine battery aging rate, and the thermal effect on this reaction rate is considered by Arrhenius Law. The resulting capacity and power fading is included in the system-level study. Sensitivity analysis shows that battery aging could cause fuel economy loss by 5.9%, and increasing temperature could improve fuel economy at any given state-of-health, while accelerating battery aging. Stochastic dynamic programming algorithm is applied to a modeled system to handle the tradeoff between two objectives: maximizing fuel economy and minimizing battery aging.
Journal Article

Model-Based Estimation of Vehicle Aerodynamic Drag and Rolling Resistance

2015-09-29
2015-01-2776
Commercial vehicles transport the majority of the inland freight in US and a significant number of passengers. They are large fuel consumers as they operate a large number of hours per day, pulling heavy loads. The increasing fuel price and the Green House Gas emission regulation have provided a strong impetus for new technologies capable of improving the commercial vehicle fuel economy. Among others, optimized powertrain control can improve the vehicle fuel economy, particularly if it is based on accurate information about the instantaneous load demand. Furthermore, model-based online vehicle parameter estimator is critical for implementation of an adaptive vehicle controller. While vehicle mass estimation has been successfully demonstrated, rolling resistance and aerodynamic drag estimation has not been fully explored yet. This paper examines this problem using model-based approach with a supervisory data extraction scheme.
Technical Paper

Influence of Directly Injected Gasoline and Porosity Fraction on the Thermal Properties of HCCI Combustion Chamber Deposits

2015-09-06
2015-24-2449
The limited operational range of low temperature combustion engines is influenced by near-wall conditions. A major factor is the accumulation and burn-off of combustion chamber deposits. Previous studies have begun to characterize in-situ combustion chamber deposit thermal properties with the end goal of understanding, and subsequently replicating the beneficial effects of CCD on HCCI combustion. Combustion chamber deposit thermal diffusivity was found to differ depending on location within the chamber, with significant initial spatial variations, but a certain level of convergence as equilibrium CCD thickness is reached. A previous study speculatively attributed these spatially dependent CCD diffusivity differences to either local differences in morphology, or interactions with the fuel-air charge in the DI engine. In this work, the influence of directly injected gasoline on CCD thermal diffusivity is measured using the in-situ technique based on fast thermocouple signals.
Journal Article

Quantification of Drive Cycle's Rapid Speed Fluctuations Using Fourier Analysis

2015-04-14
2015-01-1213
This paper presents a new way to evaluate vehicle speed profile aggressiveness, quantify it from the perspective of the rapid speed fluctuations, and assess its impact on vehicle fuel economy. The speed fluctuation can be divided into two portions: the large-scale low frequency speed trace which follows the ongoing traffic and road characteristics, and the small-scale rapid speed fluctuations normally related to the driver's experience, style and ability to anticipate future events. The latter represent to some extent the driver aggressiveness and it is well known to affect the vehicle energy consumption and component duty cycles. Therefore, the rapid speed fluctuations are the focus of this paper. Driving data collected with the GPS devices are widely adopted for study of real-world fuel economy, or the impact on electrified vehicle range and component duty cycles.
Technical Paper

A Hybrid Electric Vehicle Thermal Management System - Nonlinear Controller Design

2015-04-14
2015-01-1710
The components in a hybrid electric vehicle (HEV) powertrain include the battery pack, an internal combustion engine, and the electric machines such as motors and possibly a generator. These components generate a considerable amount of heat during driving cycles. A robust thermal management system with advanced controller, designed for temperature tracking, is required for vehicle safety and energy efficiency. In this study, a hybridized mid-size truck for military application is investigated. The paper examines the integration of advanced control algorithms to the cooling system featuring an electric-mechanical compressor, coolant pump and radiator fans. Mathematical models are developed to numerically describe the thermal behavior of these powertrain elements. A series of controllers are designed to effectively manage the battery pack, electric motors, and the internal combustion engine temperatures.
Technical Paper

An Evaluation of Knock Determination Techniques for Diesel-Natural Gas Dual Fuel Engines

2014-10-13
2014-01-2695
The recent advent of highly effective drilling and extraction technologies has decreased the price of natural gas and renewed interest in its use for transportation. Of particular interest is the conversion of dedicated diesel engines to operate on dual-fuel with natural gas injected into the intake manifold. Dual-fuel systems with natural gas injected into the intake manifold replace a significant portion of diesel fuel energy with natural gas (generally 50% or more by energy content), and produce lower operating costs than diesel-only operation. Diesel-natural gas engines have a high compression ratio and a homogeneous mixture of natural gas and air in the cylinder end gases. These conditions are very favorable for knock at high loads. In the present study, knock prediction concepts that utilize a single step Arrhenius function for diesel-natural gas dual-fuel engines are evaluated.
Journal Article

Optimization of the Series-HEV Control with Consideration of the Impact of Battery Cooling Auxiliary Losses

2014-04-01
2014-01-1904
This paper investigates the impact of battery cooling ancillary losses on fuel economy, and optimal control strategy for a series hybrid electric truck with consideration of cooling losses. Battery thermal model and its refrigeration-based cooling system are integrated into vehicle model, and the parasitic power consumption from cooling auxiliaries is considered in power management problem. Two supervisory control strategies are compared. First, a rule-based control strategy is coupled with a thermal management strategy; it controls power system and cooling system separately. The second is optimal control strategy developed using Dynamic Programming; it optimizes power flow with consideration of both propulsion and cooling requirement. The result shows that battery cooling consumption could cause fuel economy loss as high as 5%.
Technical Paper

A Framework for Optimization of the Traction Motor Design Based on the Series-HEV System Level Goals

2014-04-01
2014-01-1801
The fidelity of the hybrid electric vehicle simulation is increased with the integration of a computationally-efficient finite-element based electric machine model, in order to address optimization of component design for system level goals. In-wheel electric motors are considered because of the off-road military application which differs significantly from commercial HEV applications. Optimization framework is setup by coupling the vehicle simulation to the constrained optimization solver. Utilizing the increased design flexibility afforded by the model, the solver is able to reshape the electric machine's efficiency map to better match the vehicle operation points. As the result, the favorable design of the e-machine is selected to improve vehicle fuel economy and reduce cost, while satisfying performance constraints.
Technical Paper

Deaeration Device Study for a Hydraulic Hybrid Vehicle

2012-09-24
2012-01-2038
This paper investigates the development of a deaeration device to remove nitrogen from the hydraulic fluid in hydraulic hybrid vehicles (HHVs). HHVs, which use accumulators to store and recycle energy, can significantly reduce vehicle emissions in urban delivery vehicles. In accumulators, nitrogen behind a piston cylinder or inside a bladder pressurizes an incompressible fluid. The permeation of the nitrogen through the rubber bladder into the hydraulic fluid limits the efficiency and reliability of the HHV system, since the pressure drop in the hydraulic fluid can in turn cause cavitation on pump components and excessive noise in the system. The nitrogen bubbles within the hydraulic fluid may be removed through the employment of commercial bubble eliminators if the bubbles are larger than a certain threshold. However, gas is also dissolved within the hydraulic fluid; therefore, novel design is necessary for effective deaeration in the fluid HHV circuit.
Journal Article

Frequency Domain Power Distribution Strategy for Series Hybrid Electric Vehicles

2012-04-16
2012-01-1003
Electrification and hybridization have great potential for improving fuel economy and reducing visual signature or soot emissions in military vehicles. Specific challenges related to military applications include severe duty cycles, large and uncertain energy flows through the system and high thermal loads. A novel supervisory control strategy is proposed to simultaneously mitigate severe engine transients and to reduce high electric current in the battery without oversizing the battery. The described objectives are accomplished by splitting the propulsion power demand through filtering in the frequency domain. The engine covers only low frequency power demand profile while the battery covers high frequency components. In the proposed strategy, the separation filter is systematically designed to identify different frequency components with the consideration of fuel consumption, aggressive engine transients, and battery electric loads.
Journal Article

Optimization of Rule-Based Control Strategy for a Hydraulic-Electric Hybrid Light Urban Vehicle Based on Dynamic Programming

2012-04-16
2012-01-1015
This paper presents a low-cost path for extending the range of small urban pure electric vehicles by hydraulic hybridization. Energy management strategies are investigated to improve the electric range, component efficiencies, as well as battery usable capacity. As a starting point, a rule-based control strategy is derived by analysis of synergistic effects of lead-acid batteries, high efficient operating region of DC motor and the hydraulic pump/motor. Then, Dynamic Programming (DP) is used as a benchmark to find the optimal control trajectories for DC motor and Hydraulic Pump/Motor. Implementable rules are derived by studying the optimal control trajectories from DP. With new improved rules implemented, simulation results show electric range improvement due to increased battery usable capacity and higher average DC motor operating efficiency.
Technical Paper

Real-World Driving Pattern Recognition for Adaptive HEV Supervisory Control: Based on Representative Driving Cycles in Midwestern US

2012-04-16
2012-01-1020
Impact of driving patterns on fuel economy is significant in hybrid electric vehicles (HEVs). Driving patterns affect propulsion and braking power requirement of vehicles, and they play an essential role in HEV design and control optimization. Driving pattern conscious adaptive strategy can lead to further fuel economy improvement under real-world driving. This paper proposes a real-time driving pattern recognition algorithm for supervisory control under real-world conditions. The proposed algorithm uses reference real-world driving patterns parameterized from a set of representative driving cycles. The reference cycle set consists of five synthetic representative cycles following the real-world driving distance distribution in the US Midwestern region. Then, statistical approaches are used to develop pattern recognition algorithm. Driving patterns are characterized with four parameters evaluated from the driving cycle velocity profiles.
X