Refine Your Search

Topic

Search Results

Book

The Use of Electric Batteries for Civil Aircraft Applications

2018-12-10
The Use of Electric Batteries for Civil Aircraft Applications is a comprehensive and focused collection of SAE International technical papers, covering both the past and the present of the efforts to develop batteries that can be specifically installed in commercial aircraft. Recently, major commercial aircraft manufacturers started investigating the possibility of using Li-Ion batteries at roughly the same time that the military launched their first applications. As industry events unfolded, the FAA and committees from RTCA and SAE continued efforts to create meaningful standards for the design, testing, and certification of Li-Ion battery systems for commercial aviation. The first document issued was RTCA DO-311 on Mar. 13, 2008. As the industry continues to develop concepts and designs for the safe utilization of the new Li-Ion battery systems, many are already working on designs for all-electric aircraft, and small two-seat training aircraft are currently flying.
Book

The Electrification of Civil Aircraft and the Evolution of Energy Storage

2017-08-28
Larger airframes drove the development of electrical systems, capable of quickly and reliably starting the new higher power engines. These soon gave rise to the need for engine-mounted electrical generators as the primary source of in-flight power for the electrical loads and onboard recharging of the aircraft battery system. Of all the backup power sources, batteries represent the most common means of storing energy for auxiliary or emergency power requirements. It is not unusual for a typical commercial airliner, such as a B-737 or A-320, to have dozens of batteries on board. Over time, multiple battery chemistries were put to the test and the industry is still working on the optimal option. The lithium-ion technology has been gaining acceptance, with some important aspects to be considered: the application type, basic safety requirements and the presence or absence of humans on the vehicle.
Book

Vehicle Battery Fires: Why They Happen and How They Happen

2017-01-15
Battery Fires: Why They Happen and How They Happen was written to assist those interested in this type of incident understand how automotive fires develop, spread and the damage they cause, using both deductive and inductive reasoning. The main focus of the book resides in looking at differences in failure modes between DC and AC systems, general types of battery and electrical failure modes leading to fire, how to interpret electrical fire, determination of the primary failed part, and other skills the investigating engineer will require to perform technical failure mode analysis. However, some fires have consumed the evidence to the point where a determination cannot be made with any degree of certainty. In this instance, evidence will be quite limited, and the analysis will have its limitations and should be included in the discussion as such. In some cases, a “cause undetermined” report is all the evidence will support.
Book

Successful Prediction of Product Performance

2016-09-12
The ability to successfully predict industrial product performance during service life provides benefits for producers and users. This book addresses methods to improve product quality, reliability, and durability during the product life cycle, along with methods to avoid costs that can negatively impact profitability plans. The methods presented can be applied to reducing risk in the research and design processes and integration with manufacturing methods to successfully predict product performance. This approach incorporates components that are based on simulations in the laboratory. The results are combined with in-field testing to determine degradation parameters. These approaches result in improvements to product quality, performance, safety, profitability, and customer satisfaction.
Book

Progress in Modeling and Simulation of Batteries

2016-06-15
Modeling and simulation of batteries, in conjunction with theory and experiment, are important research tools that offer opportunities for advancement of technologies that are critical to electric motors. The development of data from the application of these tools can provide the basis for managerial and technical decision-making. Together, these will continue to transform batteries for electric vehicles.
Book

Lithium Ion Batteries in Electric Drive Vehicles

2016-05-16
This research focuses on the technical issues that are critical to the adoption of high-energy-producing lithium Ion batteries. In addition to high energy density / high power density, this publication considers performance requirements that are necessary to assure lithium ion technology as the battery format of choice for electrified vehicles. Presentation of prime topics includes: • Long calendar life (greater than 10 years) • Sufficient cycle life • Reliable operation under hot and cold temperatures • Safe performance under extreme conditions • End-of-life recycling To achieve aggressive fuel economy standards, carmakers are developing technologies to reduce fuel consumption, including hybridization and electrification. Cost and affordability factors will be determined by these relevant technical issues which will provide for the successful implementation of lithium ion batteries for application in future generations of electrified vehicles.
Book

Automotive 48-volt Technology

2016-04-15
The introduction of 48-volt technology enables traditionally parasitic applications that run off the engine to be replaced with electrically driven systems, resulting in improvements in performance and efficiency. In the first of a series of reports produced jointly by ABOUT Automotive and SAE International, this comprehensive Executive Report analyses major engineering challenges facing the industry, and the solution strategies key players are beginning to adopt.
Book

Impacting Commercialization of Rapid Hydrogen Fuel Cell Electric Vehicles (FCEV)

2016-02-19
Alternative propulsion technologies are becoming increasingly important with the rise of stricter regulations for vehicle efficiency, emission regulations, and concerns over the sustainability of crude oil supplies. The fuel cell is a critical component of alternative propulsion systems, and as such has many aspects to consider in its design. Fuel cell electric vehicles (FCEVs) powered by proton-exchange membrane fuel cells (PEFC) and fueled by hydrogen, offer the promise of zero emissions with excellent driving range of 300-400 miles, and fast refueling times; two major advantages over battery electric vehicles (BEVs). FCEVs face several remaining major challenges in order to achieve widespread and rapid commercialization. Many of the challenges, especially those from an FCEV system and subsystem cost and performance perspective are addressed in this book.
Book

Automotive Charging Infrastructure: Vehicle and Grid Integration

2016-01-01
"Spotlight on Design" features video interviews and case studies, focusing on technology breakthroughs, hands-on testimonials, and the importance of fundamentals. Viewers are virtually taken to industry labs and research centers to learn how design engineers solve real-life problems. These challenges include enhancing product performance, reducing cost, improving quality and safety, while decreasing environmental impact, and achieving regulatory compliance. In the episode "Automotive Charging Infrastructure: Vehicle and Grid Integration" (21:00), engineers from NextEnergy and an infrastructure expert from General Motors explain how technologies are rapidly converging to power electric vehicles and support the overall electric grid.
Book

48-Volt Developments

2015-11-09
Development of higher-voltage electrical systems in vehicles has been slowly progressing over the past few decades. However, tightening vehicle efficiency and emissions regulations and increasing demand for onboard electrical power means that higher voltages, in the form of supplemental 48 V subsystems, may soon be nearing production as the most cost-effective way to meet regulations. The displacement of high-wattage loads to more efficient 48 V networks is expected to be the next step in the development of a new generation of mild hybrid vehicles. In addition to improved fuel economy and reduced emissions, 48 V systems could potentially save costs on new electrical features and help better address the emerging needs of future drivers. Challenges to 48 V system implementation remain, leading to discussions by experts from leading car makers and suppliers on the need for an international 48 V standard. Initial steps toward a proposed standard have already been taken.
Book

Energy Harvesting/Regeneration for Electric Vehicles Land, Water & Air 2015-2025

2014-12-01
The electric vehicle industry - land, water and air - is rapidly rising to become a market of over $533 billion by 2025. Some run entirely on harvested energy as with solar lake boats. Others recycle energy as with regenerative braking of cars, buses and military vehicles harvesting kinetic energy. Others use different forms of harvesting either to charge the traction batteries, or to drive autonomous device. In some cases, harvesting is making completely new forms of electric vehicle possible such as "glider" Autonomous Underwater Vehicles (AUVs) that can stay at sea for years, gaining electricity from both wave power and sunshine. Multiple forms of energy harvesting on one vehicle are becoming more common from cars to superyachts.
Book

Future Technology for Hybrid and Pure Electric Cars 2015-2025

2014-11-01
E-cars are oversupplied and changing in all respects but in this frenzy of birth and death the future is being created with hybrid cars rapidly gaining market share. The sales of pure electric cars are likely to take off in the second half of the coming decade as certain technical and cost challenges are resolved. Toyota and Tesla have hugely benefitted from correct market positioning. Yet, Toyota is now betting strongly on fuel- cell hybrids, and Tesla on mainstream pure electric cars. A vicious shakeout of car and battery manufacturers has commenced with the winners expecting a handsome pay-off. IDTechEx finds that the global sales of hybrid and pure electric cars will triple to $178.9 billion in 2024 as they are transformed. For example, components are becoming integrated; the range extender, as an optional extra, breaks down the difference between pure electric and hybrid. Car manufacturers vertically integrate and collaborate, competing with their suppliers.
Book

Two-Wheelers, Micro-EVs (Quadricycles), Mobility for Disabled 2013-2023

2014-11-01
This report looks closely at global trends in light electric vehicles’ (LEVs) technology, manufacture and market drivers such as legislation and the fact that several Chinese cities are banning or severely restricting LEVs. In the last few years, nearly every nation has bought ebikes from China, and in some cases, the volumes are now significant. Sales will reach 130 million yearly before 2025, making it one of the world's largest industries. The report encompasses over 70 brands, and gives forecasts of sales numbers, unit prices and total market value for 2013-2023. A significant percentage of ebikes sold are scooters in that they have the driver's feet rest on a platform - they are not straddled by the driver. Today, the LEV industry is dominated by large bicycle companies, due to their access to distribution. In the future, these companies will face major competition, and may be pushed aside by car, motorcycle, and car parts companies.
Book

Electric Vehicle Forecasts, Trends and Opportunities 2015-2025

2014-10-01
This master report summarizing and forecasting every sector of the EV industry remains unique. It adds new sectors as they become substantial, the latest being car-like micro-EVs homologated as quadricycles in Europe. Many profitable niches are emerging just as the largest major sectors are changing in importance; the industrial and commercial sector is now bigger and much more profitable than e-cars, and is set to remain so for at least eight more years. All components are changing with supercapacitors sometimes replacing or partly replacing batteries and also new types of battery, energy harvesting, power electronics and structure powering growth. Disruptive change is now the norm and the fruits of all this are truly spectacular; including such things as the Marian fast- surface boat that acts as a submarine when necessary, the fixed-wing plane that will stay aloft for five years on sunshine and the flying jet ski.
Book

Design of Automotive Composites

2014-08-04
Design of Automotive Composites reports that successful designs of automotive composites occurred recently in this arena. The chapters consist of eleven technical papers selected from the Automotive Composites and other relevant sessions that the editors have been organizing for the SAE International World Congress over the past five years. The book is divided into four sections: o Body Structures o Powertrain Components o Suspension Components o Electrical and Alternative Vehicle Components The composite design examples presented in Design of Automotive Composites come from the major OEMs and top-tier suppliers and are most relevant to the automotive materials challenges currently faced by the industry. Many of the innovative ideas have already been implemented on existing or new model vehicles, although a great deal of innovation is still in the works.
Book

Integrated Vehicle Health Management: Essential Reading

2013-09-25
Integrated Vehicle Health Management (IVHM) is a relatively new subject, with its roots back in the space sector of the early 1990s. Although many of the papers written around that time did not refer to it as IVHM, the fundamental principles of considering an integrated end-to-end system to monitor the overall health of the asset were clearly visible. As the subject of Integrated Vehicle Health Management (IVHM) and its associated technologies have grown up, businesses are making the transformation from selling a product to selling a service. This can be viewed as a positive disruption, as a relatively small technology breakthrough is being brought to market for a large business benefit. The sequence “sense—acquire—transfer—analyze—act “ feeds the information (processed data) on the asset’s health into the Operations or Management control center.
Book

Honda R&D Technical Review: April 2013

2013-04-01
Honda's April 2013 R&D Technical Review features cutting-edge developments from Honda's worldwide R&D teams. This edition brings 15 original papers on the introduction of new technologies, and includes 11 additional of the company's best technical papers published since October 2012. They cover advancements in the following areas: • Low-engine-speed self- ignition, • Improvements of durability for lean, • NOx reduction behavior on Iron Ion-exchanged Zeolite Catalyst for ULEV 50 • Projected texture stereo vision in sunlight • Development of Battery System for EV • Development of Battery Traceability System for EV • Introduction of Solar Hydrogen Station Installed in Japan • Development of Electric Servo Brake System
Book

Hydrogen, The Post-Oil Fuel?

2012-11-01
Hydrogen, energy vector for the future? Or, on the contrary, limited to its current applications in the field of chemistry and refining for decades to come, possibly even until the end of the century? There is much controversy over this issue and two sides to the argument. Advocates of the hydrogen civilization consider that, following a technological revolution hydrogen will play a universal role alongside electricity as a substitute for fossil fuels, especially (but not only) in transport, leading to radical elimination of CO2 emissions. For the skeptics, and even outspoken opponents, hydrogen will remain restricted to its current applications due to the insoluble problems inherent to its generalized use, especially in transport. This book highlights the increasing and inevitable role of "energy" hydrogen – as opposed to chemical hydrogen – in the key sectors of transport and "clean" electricity production.
Book

Honda R&D Technical Review: April 2012

2012-04-01
This e-book gives unique insight into the cutting-edge technical developments from Honda's worldwide R&D team. The 23 papers included in this volume chronicle the best of Honda's documented technical advancements from October 2011 through March 2012 in automotive, motorcycle, power products, and other technologies. Full-color diagrams complement the text. Title highlights include: • Development of New CVT for the K Car • Development of New ASIMO - Realization of Autonomous Machine • Battery Control Technology for Li-ion Battery System for HEV • Study of Evaluation Method for Knee-grip Feeling of Motorcycles • Construction of Knock Detection Logic by Pattern Recognition Using Short-time Fourier Transform
X