Refine Your Search

Topic

Search Results

Journal Article

Optimization and Performance Evaluation of Additives-Enhanced Fluid in Machining Using Split-Plot Design

2024-04-15
Abstract In recent years, the use of cutting fluids has become crucial in hard metal machining. Traditional non-biodegradable cutting fluids have long dominated various industries for machining. This research presents an innovative approach by suggesting a sustainable alternative: a cutting fluid made from a blend of glycerol (GOL) and distilled water (DW). We conducted a thorough investigation, creating 11 different GOL and DW mixtures in 10% weight increments. These mixtures were rigorously tested through 176 experiments with varying loads and rotational speeds. Using Design-Expert software (DES), we identified the optimal composition to be 70% GOL and 30% DW, with the lowest coefficient of friction (CFN). Building on this promising fluid, we explored further improvements by adding three nanoscale additives: Nano-graphite (GHT), zinc oxide (ZnO), and reduced graphene oxide (RGRO) at different weight percentages (0.06%, 0.08%, 0.1%, and 0.3%).
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

The Design of Operational Design Condition for Automated Driving System

2024-04-10
Abstract A new revolution has taken place in the automobile industry in recent years, intelligent and connected vehicle (ICV) [1] has achieved a higher market share in recent years and relevant technologies have been quickly developed and widely accepted, so the auto industry needs to make regulations for automated driving system (ADS) on ICVs, mainly to assure the safety of ICV. To meet the requirements above, the definition of operational design domain (ODD) [2, 3] was put forward by the Society of Automotive Engineers (SAE) and International Organization for Standardization (ISO) a few years ago. ODD defines necessary external environment conditions for the ADS to operate, but the internal status of the vehicle is also a key part of judging whether ADS can operate safely.
Journal Article

Microstructural and Corrosion Behavior of Thin Sheet of Stainless Steel-Grade Super Duplex 2507 by Gas Tungsten Arc Welding

2024-03-21
Abstract Super duplex stainless steel (SDSS) is a type of stainless steel made of chromium (Cr), nickel (Ni), and iron (Fe). In the present work, a 1.6 mm wide thin sheet of SDSS is joined using gas tungsten arc welding (GTAW). The ideal parameter for a bead-on-plate trial is found, and 0.216 kJ/mm of heat input is used for welding. As an outcome of the welding heating cycle and subsequent cooling, a microstructural study revealed coarse microstructure in the heat-affected zone and weld zone. The corrosion rate for welded joints is 9.3% higher than the base metal rate. Following the corrosion test, scanning electron microscope (SEM) analysis revealed that the welded joint’s oxide development generated a larger corrosive attack on the weld surface than the base metal surface. The percentages of chromium (12.5%) and molybdenum (24%) in the welded joints are less than those in the base metal of SDSS, as per energy dispersive X-ray (EDX) analysis.
Journal Article

Weld Fatigue Damage Assessment of Rail Track Maintenance Equipment: Regulatory Compliance and Practical Insights

2024-03-04
Abstract The use of appropriate loads and regulations is of great importance in weld fatigue assessment of rail on-track maintenance equipment and similar vehicles for optimized design. The regulations and available loads, however, are often generalized for several categories, which proves to be overly conservative for some specific categories of machines. EN (European Norm) and AAR (Association of American Railroads) regulations play a pivotal role in determining the applicable loads and acceptance criteria within this study. The availability of track-induced fatigue load data for the cumulative damage approach in track maintenance machines is often limited. Consequently, the FEA-based validation of rail track maintenance equipment often resorts to the infinite life approach rather than cumulative damage approach for track-induced travel loads, resulting in overly conservative designs.
Journal Article

Influence of Exhaust Aftertreatment System on Powertrain Vibration Behavior

2024-03-01
Abstract NVH refinement of commercial vehicles is the key attribute for customer acceptance. Engine and road irregularities are the two major factors responsible for the same. During powertrain isolators’ design alone, the mass and inertia of the powertrain are usually considered, but in practical scenarios, a directly coupled subsystem also disturbs the boundary conditions for design. Due to the upgradation in emission norms, the exhaust aftertreatment system of modern automotive vehicles becomes heavier and more complex. This system is further coupled to the powertrain through a flexible joint or fixed joint, which results in the disturbance of the performance of the isolators. Therefore, to address this, the isolators design study is done by considering a multi-body dynamics model of vehicles with 16 DOF and 22 DOF problems, which is capable to simulate static and dynamic real-life events of vehicles.
Journal Article

Demonstration of 2027 Emissions Standards Compliance Using Heavy-Duty Gasoline Compression Ignition with P1 Hybridization

2024-02-19
Abstract Heavy-duty on-road engines are expected to conform to an ultralow NOx (ULNOx) standard of 0.027 g/kWh over the composite US heavy-duty transient federal test procedure (HD-FTP) cycle by 2031, a 90% reduction compared to 2010 emissions standards. Additionally, these engines are expected to conform to Phase 2 greenhouse gas regulations, which require tailpipe CO2 emissions under 579 g/kWh. This study experimentally demonstrates the ability of high fuel stratification gasoline compression ignition (HFS-GCI) to satisfy these emissions standards. Steady-state and transient tests are conducted on a prototype multi-cylinder heavy-duty GCI engine based on a 2010-compliant Cummins ISX15 diesel engine with a urea-SCR aftertreatment system (ATS). Steady-state calibration exercises are undertaken to develop highly fuel-efficient GCI calibration maps at both cold-start and warmed up conditions.
Journal Article

Multi-objective Optimization of Injection Molding Process Based on One-Dimensional Convolutional Neural Network and the Non-dominated Sorting Genetic Algorithm II

2024-01-29
Abstract In the process of injection molding, the vacuum pump rear housing is prone to warping deformation and volume shrinkage, which affects its sealing performance. The main reason is the improper control of the injection process and the large flat structure of the vacuum pump rear housing, which does not meet its production and assembly requirements (the warpage deformation should be controlled within 1.1 mm and the volume shrinkage within 10%). To address this issue, this study initially utilized orthogonal experiments to obtain training samples and conducted a preliminary analysis using gray relational analysis. Subsequently, a predictive model was established based on a one-dimensional convolutional neural network (1D CNN).
Journal Article

Development of a Turbulent Jet-Controlled Compression Ignition Engine Concept Using Spray-Guided Stratification for Fueling a Passive Prechamber

2024-01-24
Abstract Improving thermal efficiency of an internal combustion engine is one of the most cost-effective ways to reduce life cycle-based CO2 emissions for transportation. Lean burn technology has the potential to reach high thermal efficiency if simultaneous low NOx, HC, and CO emissions can be achieved. Low NOx can be realized by ultra-lean (λ ≥ 2) spark-ignited combustion; however, the HC and CO emissions can increase due to slow flame propagation and high combustion variability. In this work, we introduce a new combustion concept called turbulent jet-controlled compression ignition, which utilizes multiple turbulent jets to ignite the mixture and subsequently triggers end gas autoignition. As a result, the ultra-lean combustion is further improved with reduced late-cycle combustion duration and enhanced HC and CO oxidation. A low-cost passive prechamber is innovatively fueled using a DI injector in the main combustion chamber through spray-guided stratification.
Journal Article

Machine Learning-Based Modeling and Predictive Control of Combustion Phasing and Load in a Dual-Fuel Low-Temperature Combustion Engine

2024-01-18
Abstract Reactivity-controlled compression ignition (RCCI) engine is an innovative dual-fuel strategy, which uses two fuels with different reactivity and physical properties to achieve low-temperature combustion, resulting in reduced emissions of oxides of nitrogen (NOx), particulate matter, and improved fuel efficiency at part-load engine operating conditions compared to conventional diesel engines. However, RCCI operation at high loads poses challenges due to the premixed nature of RCCI combustion. Furthermore, precise controls of indicated mean effective pressure (IMEP) and CA50 combustion phasing (crank angle corresponding to 50% of cumulative heat release) are crucial for drivability, fuel conversion efficiency, and combustion stability of an RCCI engine.
Journal Article

Optimizing Intralogistics in an Engineer-to-Order Enterprise with Job Shop Production: A Case Study of the Control Cabinet Manufacturing

2024-01-16
Abstract This study underscores the benefits of refining the intralogistics process for small- to medium-sized manufacturing businesses (SMEs) in the engineer-to-order (ETO) sector, which relies heavily on manual tasks. Based on industrial visits and primary data from six SMEs, a new intralogistics concept and process was formulated. This approach enhances the value-added time of manufacturing workers while also facilitating complete digital integration as well as improving transparency and traceability. A practical application of this method in a company lead to cutting its lead time by roughly 11.3%. Additionally, improved oversight pinpointed excess inventory, resulting in advantages such as reduced capital needs and storage requirements. Anticipated future enhancements include better efficiency from more experienced warehouse staff and streamlined picking methods. Further, digital advancements hold promise for cost reductions in administrative and supportive roles.
Journal Article

Designing Manual Workplace Systems in Engineer-to-Order Enterprises to Improve Productivity: A Kano Analysis

2024-01-16
Abstract Being an engineer-to-order (ETO) operating industry, the control cabinet industry faces difficulties in process and workplace optimizations due to changing requirements and lot size one combined with volatile orders. To optimize workplaces for employees, current literature is focusing on ergonomic designs, providing frameworks to analyze workplaces, leaving out the optimal design for productivity. This work thus utilizes a Kano analysis, collecting empirical data to identify essential design requirements for assembly workplaces, incorporating input from switchgear manufacturing employees. The results emphasize the need for a balance between ergonomics and efficiency in workplace design. Surprisingly, few participants agree on the correlation between improved processes and workspaces having a positive impact on their well-being and product quality.
Journal Article

Dynamic Game Theoretic Electric Vehicle Decision Making

2024-01-16
Abstract Real-world driving in diverse traffic must cope with dynamic environments including a multitude of agents with uncertain behaviors. This poses a challenging motion planning and decision-making problem, as suitable algorithms should manage to obtain optimal solutions considering nearby vehicles. The state-of-the-art way of environment and action generalization is built on mathematical modeling and probabilistic programming of idealistic incidents. In this article we present dynamic anytime decision making, a decision-making algorithm that takes advantage of natural evolutionary and developmental processes to make decisions for an autonomous vehicle navigating in traffic. The methodology to achieve multidimensional judgment under unforeseen circumstances is to enable stochastic Bayesian game theory when modeling interactive properties and scenario estimation.
Journal Article

Influence of Passive Pre-Chamber Nozzle Diameter on Jet Ignition in a Constant-Volume Optical Engine under Varying Load and Dilution Conditions

2023-12-20
Abstract Despite the growing prominence of electrified vehicles, internal combustion engines remain essential in future transportation. This study delves into passive pre-chamber jet ignition, a leading-edge combustion technology, offering a comprehensive visualization of its operation under varying load and dilution conditions in light-duty GDI engines. Our primary objectives are to gain fundamental insights into passive pre-chamber jet ignition and subsequent main combustion processes and evaluate their response to different load and dilution conditions. We conducted experimental investigations using a light-duty, optical, single-cylinder engine equipped with three passive pre-chamber designs featuring varying nozzle diameters. Optical diagnostic imaging and heat release analysis provided critical insights.
Journal Article

TOC

2023-12-18
Abstract TOC
Journal Article

Assessing the Characterization for Multiple Cones and Cone Portions Utilizing X-Ray Diffraction in Single Point Incremental Forming

2023-12-06
Abstract Single point incremental forming (SPIF) is a robust and new technique. In the recent research scenario, materials properties such as microstructure, micro-texture analysis, and crystal structure can be accessed through characterization non-destructive techniques, e.g., scanning electron microscope (SEM), electron backscattered diffraction (EBSD), and X-ray diffraction (XRD). XRD is a non-destructive method for analyzing the fine structure of materials. This study explores how process variables such as wall angle, step size, feed rate, and forming speed affect the parts of large-, medium-, and small-sized truncated cones of aluminum alloy AA3003-O sheet. Several cone parts of truncated cones are used in this investigation to implement Scherrer’s method. The two primary determining factors peak height and crystallite size are assessed for additional analysis in the present research.
Journal Article

Review of Gas Generation Behavior during Thermal Runaway of Lithium-Ion Batteries

2023-12-04
Abstract Due to the limitations of current battery manufacturing processes, integration technology, and operating conditions, the large-scale application of lithium-ion batteries in the fields of energy storage and electric vehicles has led to an increasing number of fire accidents. When a lithium-ion battery undergoes thermal runaway, it undergoes complex and violent reactions, which can lead to combustion and explosion, accompanied by the production of a large amount of flammable and toxic gases. These flammable gases continue to undergo chemical reactions at high temperatures, producing complex secondary combustion products. This article systematically summarizes the gas generation characteristics of different types and states of batteries under different thermal runaway triggering conditions. And based on this, proposes the key research directions for the gas generation characteristics of lithium-ion batteries.
Journal Article

Effect of Two-Step Austempering Process on the Microstructure and Mechanical Properties of Low-Carbon Equivalent Austempered Ductile Iron

2023-12-01
Abstract Low-carbon equivalent austempered ductile iron (LCE-ADI) exhibits high modulus of elasticity than conventional austempered ductile iron (ADI) due to less graphite content. Austempering parameters of temperature and time significantly influence the mechanical properties of LCE-ADI. In the present work, response of the material to two-step austempering in the range of 350–450°C was studied, and a comparison was made to single-step austempering. Reduction in ferrite cell size, increase in % carbon in carbon-stabilized austenite (CSA) and increase in volume fraction of CSA led to increase in tensile strength (10%) and hardness (20%), in addition to improved toughness (10%).
Journal Article

Influence of High-Strength, Low-Alloy Steel on Fatigue Life at a Non-Load-Bearing Transverse Welded Attachment

2023-11-17
Abstract This study investigated the influence of high-strength low-alloy steel on the fatigue life of a load-bearing member with a non-load-bearing transverse welded attachment (T-joint). It compared high cycle fatigue data to two fatigue design codes, namely BS 7608 and Eurocode EN 1993-1-9. Different base and filler material combinations of varying material strengths were investigated, resulting in a total of three different specimen configurations. Two material combinations had a high-strength steel (Strenx® 700 MC D) for the base material, with one combination having a matched filler material and the other having an undermatched filler material. The third material combination had a lower-strength steel (S 355 JR AR) for the base material, with a matched filler material. Tensile tests were performed to confirm the base material mechanical properties and weld quality of the manufactured specimens.
X