Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Journal Article

Process Regulations and Mechanism of WEDM of Combustor Material

2019-06-07
Abstract This study discusses the experimental investigation on WEDM of combustor material (i.e., nimonic 263). Experimentation has been executed by varying pulse-on time (Ton), pulse-off time (Toff), peak current (Ip), and spark gap voltage (Sv). Material removal rate (MRR), surface roughness (SR), and wire wear rate (WWR) are employed as process performance characteristics. Experiments are designed as per the box-Behnken design technique. Parametric optimization has also been performed using response surface methodology. Besides this, field-emission scanning electron microscope (FE-SEM) and an optical microscope are utilized to characterize WEDMed and worn-out wire surfaces. It is observed that both surfaces contain micro-cracks, craters, spherical droplets, and a lump of debris. Furthermore, the mechanism of recast layer formation has been critically evaluated to apprehend a better understanding of the technique. The key features of the experimental procedure are also highlighted.
Journal Article

Comparison Study of Malaysian Driver Seating Position in SAEJ1517 Accommodation Model

2019-04-08
Abstract A key element in an ergonomically designed driver’s seat in a car is the correct identification of driver seating position and posture accommodation. Current practice by the automotive Original Equipment Manufacturer (OEM) is to utilize the Society of Automotive Engineering (SAE) J1517 standard practice as a reference. However, it was found that utilizing such guidelines, which were developed based on the American population, did not fit well with the anthropometry and stature of the Malaysian population. This research seeks to address this issue by comparing the SAE J1517 Model against Malaysian preferred driving position. A total of 62 respondents were involved for the driver seating position and accommodation study in the vehicle driver’s seat buck mockup survey and measurements. The results have shown that the Malaysian drivers prefer to sit forward as compared to the SAE J1517 Model and have shorter posture joint angle.
Journal Article

A Model Study for Prediction of Performance of Automotive Interior Coatings: Effect of Cross-Link Density and Film Thickness on Resistance to Solvents and Chemicals

2019-03-27
Abstract Automotive interior coatings for flexible and rigid substrates represent an important segment within automotive coating space. These coatings are used to protect plastic substrates from mechanical and chemical damage, in addition to providing colour and design aesthetics. These coatings are expected to resist aggressive chemicals, fluids, and stains while maintaining their long-term physical appearance and mechanical integrity. Designing such coatings, therefore, poses significant challenges to the formulators in effectively balancing these properties. Among many factors affecting coating properties, the cross-link density (XLD) and solubility parameter (δ) of coatings are the most predominant factors.
Journal Article

Development of a Learning Capability in Virtual Operator Models

2019-03-14
Abstract This research developed methods for a virtual operator model (VOM) to learn the optimal control inputs for operation of a virtual excavator. Virtual design, used to model, simulate, and test new features, has often been limited by the fidelity of the virtual model of human operators. Human operator learns, over time, the capability, limits, and control characteristics of new vehicles to develop the best strategy to maximize the efficiency of operation. However, VOMs are developed with fixed strategies and for specific vehicle models (VMs) and require time-consuming re-tuning of the VOM for each new vehicle design. Thus, there typically is no capability to optimize strategies, taking account of variation in vehicle capabilities and limitations. A VOM learning capability was developed to optimize control inputs for the swing-to-pile task of a trenching operation. Different control strategies consisted of varied combinations of speed control, position control, and coast.
Journal Article

Design and Development of a Semi-Autonomous Trailer Concept

2019-01-23
Abstract This work builds on previous efforts to develop a self-propelled, semi-autonomous trailer, for use with a standard passenger car. This trailer design involves a power source on the trailer itself, as well as the capacity to sense the load present in the trailer hitch that joins it to the towing vehicle. The load-sensing trailer hitch is used as the input to a control algorithm to determine how much power is required from the trailer’s power source. Two similar concepts were designed and constructed, using different approaches and different scales for testing. Preliminary testing was carried out, and while work remains to be done in order to produce a production-ready design, the progress made further demonstrates the feasibility and value of such a design. Future work will carry forward the research and development of this concept, with the goal of determining the best scheme for practical implementation.
Journal Article

A Comprehensive Attack and Defense Model for the Automotive Domain

2019-01-17
Abstract In the automotive domain, the overall complexity of technical components has increased enormously. Formerly isolated, purely mechanical cars are now a multitude of cyber-physical systems that are continuously interacting with other IT systems, for example, with the smartphone of their driver or the backend servers of the car manufacturer. This has huge security implications as demonstrated by several recent research papers that document attacks endangering the safety of the car. However, there is, to the best of our knowledge, no holistic overview or structured description of the complex automotive domain. Without such a big picture, distinct security research remains isolated and is lacking interconnections between the different subsystems. Hence, it is difficult to draw conclusions about the overall security of a car or to identify aspects that have not been sufficiently covered by security analyses.
Journal Article

Parameter Sensitivity and Process Time Reduction for Friction Element Welding of 6061-T6 Aluminum to 1500 MPa Press-Hardened Steel

2018-12-14
Abstract Conventional fusion joining techniques pervasive in the automotive industry are unable to effectively join aluminum and steel. To solve this problem, a technique termed friction element welding (FEW) has been developed, which is able to join any nonferrous top sheet material to a base steel layer, independent of the base layer strength. FEW works on the same principles as friction welding, as a steel element is pushed and rotated against a nonferrous top sheet to create frictional energy which softens and flows the material around the fastener shaft and under the fastener head, exposing the steel below. The element then contacts the steel and bonds through traditional friction welding. FEW is a four-step process (penetration, cleaning, welding, compression), with two to four parameters (endload, spindle speed, displacement transition, time transition) controlling each step.
Journal Article

Direct Versus Indirect Acting Piezoelectric CR Injectors: Comparison of Hydraulic Performance, Pollutant Emissions, Combustion Noise, and Fuel Consumption

2018-11-08
Abstract A comprehensive comparison between a direct acting and an indirect acting piezoelectric injector has been carried out both at the hydraulic rig and at the dynamometer cell. The working principle of these injector typologies is illustrated, and their hydraulic performance has been analyzed and discussed on the basis of experimental data collected at a hydraulic test rig. The injector characteristics, nozzle opening and closure delays, injector leakages, injected flow-rate profiles, injector-to-injector variability in the injected mass, injected volume fluctuations with the dwell time (DT), and minimum DT for fusion-free multiple injections have been compared in order to evaluate the impact of the injector driving system on the injection apparatus performance. The direct acting and indirect acting piezoelectric injectors have been installed on a Euro 5 diesel engine, which has been tested at a dynamometer cell.
Journal Article

Uncertainty Assessment of Octane Index Framework for Stoichiometric Knock Limits of Co-Optima Gasoline Fuel Blends

2018-10-25
Abstract This study evaluates the applicability of the Octane Index (OI) framework under conventional spark ignition (SI) and “beyond Research Octane Number (RON)” conditions using nine fuels operated under stoichiometric, knock-limited conditions in a direct injection spark ignition (DISI) engine, supported by Monte Carlo-type simulations which interrogate the effects of measurement uncertainty. Of the nine tested fuels, three fuels are “Tier III” fuel blends, meaning that they are blends of molecules which have passed two levels of screening, and have been evaluated to be ready for tests in research engines. These molecules have been blended into a four-component gasoline surrogate at varying volume fractions in order to achieve a RON rating of 98. The molecules under consideration are isobutanol, 2-butanol, and diisobutylene (which is a mixture of two isomers of octene). The remaining six fuels were research-grade gasolines of varying formulations.
Journal Article

The Impacts of Pd in BEA Zeolite on Decreasing Cold-Start NMOG Emission of an E85 Fuel Vehicle

2018-10-25
Abstract In the development of hydrocarbon (HC) traps for E85 fuel vehicle emission control, the addition of palladium (Pd) to BEA zeolite was studied for trapping and decreasing cold-start ethanol emissions. BEA zeolite after a laboratory aging at 750°C for 25 hours released nearly all of the trapped ethanol as unconverted ethanol at low temperature, and some ethene was released at a higher temperature by a dehydration reaction. The addition of Pd to BEA zeolite showed a decrease in the release of unconverted ethanol emissions even after the lab aging. The release of methane (CH4), acetaldehyde (CH3CHO), carbon monoxide (CO), and CO2 from Pd-BEA zeolite during desorption (temperature programmed desorption (TPD)) demonstrated that multiple ethanol reaction mechanisms were involved including dehydrogenation and decomposition reactions.
Journal Article

Integrated Driving and Braking Control Unit for Electric Bikes

2018-10-04
Abstract In this research, an integrated driving and braking control unit was developed for electric bikes. The unit integrates the driving and braking circuits in a module. Alternate commutation was used to design the driving and braking unit of a customized brushless direct-current hub motor (BLDCHM). The braking torque for the braking section is generated through alternating the duty cycle of the pulse-width-modulated (PWM) commands of the switching elements and phase sequence arrangement of the current conduction loops. The current conduction loops in the motor and switching elements is arranged to adjust the braking torque in a sophisticated way. The integrated design has been successfully tested in a commercialized electric bike with a BLDCHM.
Journal Article

Active Suspension: Future Lessons from The Past

2018-06-18
Abstract Active suspension was a topic of great research interest near the end of last century. Ultimately broad bandwidth active systems were found to be too expensive in terms of both energy and financial cost. This past work, developing the ultimate vehicle suspension, has relevance for today’s vehicle designers working on more efficient and effective suspension systems for practical vehicles. From a control theorist’s perspective, it provides an interesting case study in the use of “practical” knowledge to allow “better” performance than predicted by theoretically optimal linear controllers. A brief history of active suspension will be introduced. Peter Wright, David Williams, and others at Lotus developed their Lotus modal control concept. In a parallel effort, Dean Karnopp presented the notion of inertial (Skyhook) damping. These concepts will be compared, the combination of these two distinctly different efforts will be discussed, and eventual vehicle results presented.
Journal Article

Automated Driving Systems and Their Insertion in the Brazilian Scenario: A Test Track Proposal

2018-06-05
Abstract The conception of Automated Driving Systems is expanding fast with the expectation of the whole society and with heavy investments toward research and development. However, the insertion of these vehicles in real scenarios worldwide is still a challenge for governments, once they require an important evolution of the legal and regulatory framework. Although there are several initiatives to accelerate the insertion process, each country has specificities when considering the traffic scenario. In order to contribute to this emerging problem, this article presents a perspective of how the insertion of these vehicles can be performed considering specificities of the Brazilian scenario, one of the world's biggest car markets. Thus, it is discussed the global scenario of autonomous vehicles, the Brazilian traffic system, and the certification and homologation process, focusing on a new test track proposal.
Journal Article

Filled Rubber Isolator’s Constitutive Model and Application to Vehicle Multi-Body System Simulation: A Literature Review

2018-06-05
Abstract Rubber elements present highly nonlinear mechanical properties affected by frequency and amplitude of excitation, prestrain and temperature, etc. Finite element (FE) models and lumped parameter models can be distinguished in the development of constitutive models of rubbers. Based on the concept of overlay model, different kinds of viscoelastic, or frequency-dependent models, and elastoplastic/friction, or amplitude-dependent models, are compared in terms of their modelling approach, parameters identification process and applications. Prestrain-dependent models and temperature-dependent thermo-mechanical models are also reviewed, including some special models which are not based on the concept of the overlay model. Experimental and computational studies of cylindrical bushings subjected to coupled deformation modes are analyzed and discussed.
Journal Article

Data Manipulation Approach and Parameters Interrelationships of the High-Pressure Torsion for AA6061-15%SiCp Composite

2018-05-29
Abstract On contrast to the qualitative approach used in the majority of researches, an evaluation quantitative approach is introduced not only to depict the plain individual effect of the influence of the high-pressure torsion (HPT) processing conditions on the microstructural and Hv-values of the ultra-hard nanostructured AA6061-15%SiCp composite but also to detect its possible parameters functional interaction and nonlinear trends involved. Experimental data were used to establish many adequate and significant empirical models to detect and to evaluate the mutual functional interrelationships between the Hv-values of the composite, each of HPT processing pressure, and number of revolutions. For each group of interrelated parameters, the preferred selected developed model has been exploited to generate the relevant contours and response surface graphs.
Journal Article

Investigation of a Six-Phase Interior Permanent Magnet Synchronous Machine for Integrated Charging and Propulsion in EVs

2018-04-17
Abstract Merits such as reduced weight, overall and operational costs of the electric vehicle (EV) while providing level 3 charging capability, are propelling research on integrated charging (IC) technology for EVs. Since the same interior permanent magnet synchronous machine (IPMSM) is used during IC and traction conditions, it is important to understand the behavior of the machine during these conditions and optimally design the machine. Hence, firstly, this paper presents a case study on performance of a laboratory 3-phase IPMSM under IC and traction conditions. Thereafter, understanding the challenges such as low magnet operating point, losses and torque oscillation in 3-phase IPMSM during IC, a 6-phase IPMSM with an unconventional configuration is investigated to yield traction characteristics like that of the 3-phase IPMSM and mitigate challenges during IC. In the process, mathematical model of the 6-phase IPMSM is developed employing the dq-axis theory.
X