Refine Your Search

Topic

Search Results

Journal Article

Hydrogen Injection Position Impact: Experimental Analysis of Central Direct Injection and Side Direct Injection in Engines

2024-04-18
Abstract A detailed investigation was carried out on the performance, combustion, and emissions of a single-cylinder direct injection hydrogen spark ignition (SI) engine with either a side-mounted direct injection (SDI) or a centrally installed direct injection (CDI) injector. The first part of the study analyzed the performance and emissions characteristics of CDI and SDI engine operations with different injection timings and pressures. This was followed by comparing the engine’s performance and emissions of the CDI and SDI operations at different engine speeds and relative air-to-fuel ratios (lambda) with the optimized injection pressure and timings. Furthermore, the performance and emission attributes of the hydrogen engine with the CDI and SDI setups were conducted at a fixed λ value of 2.75 across a broad spectrum of engine loads. The study’s main outcome demonstrates that both direct injection systems produced near-zero CO2, CO, and HC emissions.
Journal Article

Comparison of Tabulated and Complex Chemistry Approaches for Ammonia–Diesel Dual-Fuel Combustion Simulation

2024-04-18
Abstract Using ammonia as a carbon-free fuel is a promising way to reduce greenhouse gas emissions in the maritime sector. Due to the challenging fuel properties, like high autoignition temperature, high latent heat of vaporization, and low laminar flame speeds, a dual-fuel combustion process is the most promising way to use ammonia as a fuel in medium-speed engines. Currently, many experimental investigations regarding premixed and diffusive combustion are carried out. A numerical approach has been employed to simulate the complex dual-fuel combustion process to better understand the influences on the diffusive combustion of ammonia ignited by a diesel pilot. The simulation results are validated based on optical investigations conducted in a rapid compression–expansion machine (RCEM). The present work compares a tabulated chemistry simulation approach to complex chemistry-based simulations.
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

Water Droplet Collison and Erosion on High-Speed Spinning Wheels

2024-04-04
Abstract The water droplet erosion (WDE) on high-speed rotating wheels appears in several engineering fields such as wind turbines, stationary steam turbines, fuel cell turbines, and turbochargers. The main reasons for this phenomenon are the high relative velocity difference between the colliding particles and the rotor, as well as the presence of inadequate material structure and surface parameters. One of the latest challenges in this area is the compressor wheels used in turbochargers, which has a speed up to 300,000 rpm and have typically been made of aluminum alloy for decades, to achieve the lowest possible rotor inertia. However, while in the past this component was only encountered with filtered air, nowadays, due to developments in compliance with tightening emission standards, various fluids also collide with the spinning blades, which can cause mechanical damage.
Journal Article

How Drivers Lose Control of the Car

2024-03-06
Abstract After a severe lane change, a wind gust, or another disturbance, the driver might be unable to recover the intended motion. Even though this fact is known by any driver, the scientific investigation and testing on this phenomenon is just at its very beginning, as a literature review, focusing on SAE Mobilus® database, reveals. We have used different mathematical models of car and driver for the basic description of car motion after a disturbance. Theoretical topics such as nonlinear dynamics, bifurcations, and global stability analysis had to be tackled. Since accurate mathematical models of drivers are still unavailable, a couple of driving simulators have been used to assess human driving action. Classic unstable motions such as Hopf bifurcations were found. Such bifurcations seem almost disregarded by automotive engineers, but they are very well-known by mathematicians. Other classic unstable motions that have been found are “unstable limit cycles.”
Journal Article

Effect of Turbine Speed Parameter on Exhaust Pulse Energy Matching of an Asymmetric Twin-Scroll Turbocharged Heavy-Duty Engine

2024-03-04
Abstract The two-branch exhaust of an asymmetric twin-scroll turbocharged engine are asymmetrically and periodically complicated, which has great impact on turbine matching. In this article, a matching effect of turbine speed parameter on asymmetric twin-scroll turbines based on the exhaust pulse energy weight distribution of a heavy-duty diesel engine was introduced. First, it was built as an asymmetric twin-scroll turbine matching based on exhaust pulse energy distribution. Then, by comparing the average matching point and energy matching points on the corresponding turbine performance map, it is revealed that the turbine speed parameter of energy matching points was a significant deviation from the turbine speed parameter under peak efficiency, which leads to the actual turbine operating efficiency lower than the optimal state.
Journal Article

Review of Research on Asymmetric Twin-Scroll Turbocharging for Heavy-Duty Diesel Engines

2024-02-21
Abstract Asymmetric twin-scroll turbocharging technology, as one of the effective technologies for balancing fuel economy and nitrogen oxide emissions, has been widely studied in the past decade. In response to the ever-increasing demands for improved fuel efficiency and reduced exhaust emissions, extensive research efforts have been dedicated to investigating various aspects of this technology. Researchers have conducted both experimental and simulation studies to delve into the intricate flow mechanism of asymmetric twin-scroll turbines. Furthermore, considerable attention has been given to exploring the optimal matching between asymmetric twin-scroll turbines and engines, as well as devising innovative flow control methods for these turbines. Additionally, researchers have sought to comprehend the impact of exhaust pulse flow on the performance of asymmetric twin-scroll turbines.
Journal Article

Demonstration of 2027 Emissions Standards Compliance Using Heavy-Duty Gasoline Compression Ignition with P1 Hybridization

2024-02-19
Abstract Heavy-duty on-road engines are expected to conform to an ultralow NOx (ULNOx) standard of 0.027 g/kWh over the composite US heavy-duty transient federal test procedure (HD-FTP) cycle by 2031, a 90% reduction compared to 2010 emissions standards. Additionally, these engines are expected to conform to Phase 2 greenhouse gas regulations, which require tailpipe CO2 emissions under 579 g/kWh. This study experimentally demonstrates the ability of high fuel stratification gasoline compression ignition (HFS-GCI) to satisfy these emissions standards. Steady-state and transient tests are conducted on a prototype multi-cylinder heavy-duty GCI engine based on a 2010-compliant Cummins ISX15 diesel engine with a urea-SCR aftertreatment system (ATS). Steady-state calibration exercises are undertaken to develop highly fuel-efficient GCI calibration maps at both cold-start and warmed up conditions.
Journal Article

Development of a Turbulent Jet-Controlled Compression Ignition Engine Concept Using Spray-Guided Stratification for Fueling a Passive Prechamber

2024-01-24
Abstract Improving thermal efficiency of an internal combustion engine is one of the most cost-effective ways to reduce life cycle-based CO2 emissions for transportation. Lean burn technology has the potential to reach high thermal efficiency if simultaneous low NOx, HC, and CO emissions can be achieved. Low NOx can be realized by ultra-lean (λ ≥ 2) spark-ignited combustion; however, the HC and CO emissions can increase due to slow flame propagation and high combustion variability. In this work, we introduce a new combustion concept called turbulent jet-controlled compression ignition, which utilizes multiple turbulent jets to ignite the mixture and subsequently triggers end gas autoignition. As a result, the ultra-lean combustion is further improved with reduced late-cycle combustion duration and enhanced HC and CO oxidation. A low-cost passive prechamber is innovatively fueled using a DI injector in the main combustion chamber through spray-guided stratification.
Journal Article

AI-Based Virtual Sensing of Gaseous Pollutant Emissions at the Tailpipe of a High-Performance Vehicle

2024-01-09
Abstract This scientific publication presents the application of artificial intelligence (AI) techniques as a virtual sensor for tailpipe emissions of CO, NOx, and HC in a high-performance vehicle. The study aims to address critical challenges faced in real industrial applications, including signal alignment and signal dynamics management. A comprehensive pre-processing pipeline is proposed to tackle these issues, and a light gradient-boosting machine (LightGBM) model is employed to estimate emissions during real driving cycles. The research compares two modeling approaches: one involving a unique “direct model” and another using a “two-stage model” which leverages distinct models for the engine and the aftertreatment. The findings suggest that the direct model strikes the best balance between simplicity and accuracy.
Journal Article

Energy-Efficient Dispatching of Battery Electric Truck Fleets with Backhauls and Time Windows

2023-12-22
Abstract The adoption of battery electric trucks (BETs) as a replacement for diesel trucks has potential to significantly reduce greenhouse gas emissions from the freight transportation sector. However, BETs have shorter driving range and lower payload capacity, which need to be taken into account when dispatching them. This article addresses the energy-efficient dispatching of BET fleets, considering backhauls and time windows. To optimize vehicle utilization, customers are categorized into two groups: linehaul customers requiring deliveries, where the deliveries need to be made following the last-in-first-out principle, and backhaul customers requiring pickups. The objective is to determine a set of energy-efficient routes that integrate both linehaul and backhaul customers while considering factors such as limited driving range, payload capacity of BETs, and the possibility of en route recharging.
Journal Article

Lithium-Ion Battery Thermal Event and Protection: A Review

2023-12-01
Abstract The exponentially growing electrification market is driving demand for lithium-ion batteries (LIBs) with high performance. However, LIB thermal runaway events are one of the unresolved safety concerns. Thermal runaway of an individual LIB can cause a chain reaction of runaway events in nearby cells, or thermal propagation, potentially causing significant battery fires and explosions. Such a safety issue of LIBs raises a huge concern for a variety of applications including electric vehicles (EVs). With increasingly higher energy-density battery technologies being implemented in EVs to enable a longer driving mileage per charge, LIB safety enhancement is becoming critical for customers. This comprehensive review offers an encompassing overview of prevalent abuse conditions, the thermal event processes and mechanisms associated with LIBs, and various strategies for suppression, prevention, and mitigation.
Journal Article

Combustion Optimization of a Premixed Ultra-Lean Blend of Natural Gas and Hydrogen in a Dual Fuel Engine Running at Low Load

2023-12-01
Abstract The numerical study presented in this article is based on an automotive diesel engine (2.8 L, 4-cylinder, turbocharged), considering a NG–H2 blend with 30 vol% of H2, ignited by multiple diesel fuel injections. The 3D-CFD investigation aims at improving BTE, CO, and UHC emissions at low load, by means of an optimization of the diesel fuel injection strategy and of the in-cylinder turbulence (swirl ratio, SR). The operating condition is 3000 rpm – BMEP = 2 bar, corresponding to about 25% of the maximum load of a gen-set engine, able to deliver up to 83 kW at 3000 rpm (rated speed). The reference diesel fuel injection strategy, adopted in all the previous numerical and experimental studies, is a three-shot mode. The numerical optimization carried out in this study consisted in finding the optimal number of injections per cycle, as well as the best timing of each injection and the fuel mass split among the injections.
Journal Article

Performance Analysis of Cooperative Truck Platooning under Commercial Operation during Canadian Winter Season

2023-11-14
Abstract The cooperative platoon of multiple trucks with definite proximity has the potential to enhance traffic safety, improve roadway capacity, and reduce fuel consumption of the platoon. To investigate the truck platooning performance in a real-world environment, two Peterbilt class-8 trucks equipped with cooperative truck platooning systems (CTPS) were deployed to conduct the first-of-its-kind on-road commercial trial in Canada. A total of 41 CTPS trips were carried out on Alberta Highway 2 between Calgary and Edmonton during the winter season in 2022, 25 of which were platooning trips with 3 to 5 sec time gaps. The platooning trips were performed at ambient temperatures from −24 to 8°C, and the total truck weights ranged from 16 to 39 tons. The experimental results show that the average time gap error was 0.8 sec for all the platooning trips, and the trips with the commanded time gap of 5 sec generally had the highest variations.
Journal Article

Innovative Model-Free Onboard Diagnostics for Diesel Particulate Filter

2023-11-09
Abstract Recent legislations require very low soot emissions downstream of the particulate filter in diesel vehicles. It will be difficult to meet the new more stringent OBD requirements with standard diagnostic methods based on differential sensors. The use of inexpensive and reliable soot sensors has become the focus of several academic and industrial works over the past decade. In this context, several diagnostic strategies have been developed to detect DPF malfunction based on the soot sensor loading time. This work proposes an advanced online diagnostic method based on soot sensor signal projection. The proposed method is model-free and exclusively uses soot sensor signal without the need for subsystem models or to estimate engine-out soot emissions. It provides a comprehensive and efficient filter monitoring scheme with light calibration efforts.
Journal Article

Reducing Greenhouse Emissions from Light-Duty Vehicles: Supply-Chain and Cost-Effectiveness Analyses Suggest a Near-Term Role for Hybrids

2023-10-30
Abstract Policy makers generally favor all-electric vehicles over hybrid-electric vehicles because of greater unit effectiveness in reducing carbon emissions. Since both systems use lithium-ion batteries, global demand for batteries is projected to grow 10-fold by 2030. If any step in the global battery supply-chain experiences bottlenecks, shortages can occur. We use a novel cost-effectiveness metric, carbon reduction per unit of battery capacity consumed, to rank emissions reductions accomplished by, alternatively, eight plug-in hybrid-electric vehicles, 75 hybrid-electric vehicles, and 230 mild hybrid-electric vehicles, which have the same total battery capacity as one all-electric vehicle. Our main finding, although counterintuitive, is that, with limited battery supplies, larger reductions in carbon emissions can be accomplished by hybrids than by all-electric vehicles.
Journal Article

Methanol (M85) Port Fuel-Injected Spark Ignition Motorcycle Engine Development—Part 1: Combustion Optimization for Efficiency Improvement and Emission Reduction

2023-10-27
Abstract Limited fossil fuel resources and carbonaceous greenhouse gas emissions are two major problems the world faces today. Alternative fuels can effectively power internal combustion engines to address these issues. Methanol can be an alternative to conventional fuels, particularly to displace gasoline in spark ignition engines. The physicochemical properties of methanol are significantly different than baseline gasoline and fuel mixture-aim lambda; hence methanol-fueled engines require modifications in the fuel injection parameters. This study optimized the fuel injection quantity, spark timing, and air–fuel ratio for M85 (85% v/v methanol + 15% v/v gasoline) fueling of a port fuel-injected single-cylinder 500 cc motorcycle test engine. Comparative engine performance, combustion, and emissions analyses were performed for M85 and baseline gasoline.
Journal Article

Blending Carbon Intensity for Ethanol in Gasoline

2023-10-27
Abstract Greenhouse gas emissions reduction from the light-duty transportation fleet is urgent and should address both electric and conventional powertrain technologies. Internal combustion engines will continue to be employed for vehicle propulsion and fleet turnover is slow, encouraging reduction of carbon content in gasoline. Currently ethanol, a renewable fuel, is blended at the 10% level into petroleum to produce finished market gasoline. Ethanol enables a less carbon-intensive petroleum blendstock composition, providing for additional reduction, but this is often overlooked in studies. Carbon intensity, as a ratio of CO2 mass to heat released upon combustion, is a measure of well-to-wheels greenhouse gas production. The well-to-wheels carbon intensity of ethanol does not include its chemical carbon content because it arises from a renewable source, but does consider all upstream farming, production, and transportation carbon impacts.
Journal Article

Methanol (M85) Port-Fuel-Injected Spark Ignition Motorcycle Engine Development—Part 2: Dynamic Performance, Transient Emissions, and Catalytic Converter Effectiveness

2023-10-27
Abstract Methanol is emerging as an alternate internal combustion engine fuel. It is getting attention in countries such as China and India as an emerging transport fuel. Using methanol in spark ignition engines is easier and more economical than in compression ignition engines via the blending approach. M85 (85% v/v methanol and 15% v/v gasoline) is one of the preferred blends with the highest methanol concentration. However, its physicochemical properties significantly differ from gasoline, leading to challenges in operating existing vehicles. This experimental study addresses the challenges such as cold-start operation and poor throttle response of M85-fueled motorcycle using a port fuel injection engine. In this study, M85-fueled motorcycle prototype is developed with superior performance, similar/better drivability, and lower emissions than a gasoline-fueled port-fuel-injected motorcycle.
Journal Article

Investigations on Multiple Injection Strategies in a Common Rail Diesel Engine Using Machine Learning and Image-Processing Techniques

2023-10-26
Abstract The present study examines the effect of the multiple injection strategies in a common rail diesel engine using machine learning, image processing, and object detection techniques. The study demonstrates a novel approach of utilizing image-processing tools to gain information from heat release rates and in-cylinder visualizations from experimental or computational studies. The 3D CFD combustion and emission predictions of a commercial code ANSYS FORTE© are validated with small-bore common rail diesel engine data with known injection strategies. The validated CFD tool is used as a virtual plant model to optimize the injection schedule for reducing oxides of nitrogen (NOx) and soot emissions using an apparent heat release rate image-based machine learning tool. A methodology of the machine learning tool is quite helpful in predicting the NO–soot trade-off.
X