Refine Your Search

Topic

Search Results

Journal Article

Speed Planning and Prompting System for Commercial Vehicle Based on Real-Time Calculation of Resistance

2019-06-25
Abstract When commercial vehicles drive in a mountainous area, the complex road condition and long slopes cause frequent acceleration and braking, which will use 25% more fuel. And the brake temperature rises rapidly due to continuous braking on the long-distance downslopes, which will make the brake drum fail with the brake temperature exceeding 308°C [1]. Meanwhile, the kinetic energy is wasted during the driving progress on the slopes when the vehicle rolls up and down. Our laboratory built a model that could calculate the distance from the top of the slope, where the driver could release the accelerator pedal. Thus, on the slope, the vehicle uses less fuel when it rolls up and less brakes when down. What we do in this article is use this model in a real vehicle and measure how well it works.
Journal Article

A Review on Electromagnetic Sheet Metal Forming of Continuum Sheet Metals

2019-05-29
Abstract Electromagnetic forming (EMF) is a high-speed impulse forming process developed during the 1950s and 1960s to acquire shapes from sheet metal that could not be obtained using conventional forming techniques. In order to attain required deformation, EMF process applies high Lorentz force for a very short duration of time. Due to the ability to form aluminum and other low-formability materials, the use of EMF of sheet metal for automobile parts has been rising in recent years. This review gives an inclusive survey of historical progress in EMF of continuum sheet metals. Also, the EMF is reviewed based on analytical approach, finite element method (FEM) simulation-based approach and experimental approach, on formability of the metals.
Journal Article

Prediction and Control of Response Time of the Semitrailer Air Braking System

2019-05-09
Abstract The response time of the air braking system is the main parameter affecting the longitudinal braking distance of vehicles. In this article, in order to predict and control the response time of the braking system of semitrailers, an AMESim model of the semitrailer braking system involving the relay emergency valve (REV) and chambers was established on the basis of analyzing systematically the working characteristics of the braking system in different braking stages: feedback braking, relay braking, and emergency braking. A semitrailer braking test bench including the brake test circuit and data acquisition system was built to verify the model with typical maneuver. For further evaluating the semitrailer braking response time, an experiment under different control pressures was carried out. Experimental results revealed the necessity of controlling the response time.
Journal Article

Fault Diagnosis Approach for Roller Bearings Based on Optimal Morlet Wavelet De-Noising and Auto-Correlation Enhancement

2019-05-02
Abstract This article presents a fault diagnosis approach for roller bearing by applying the autocorrelation approach to filtered vibration measured signal. An optimal Morlet wavelet filter is applied to eliminate the frequency associated with interferential vibrations; the raw measured signal is filtered with a band-pass filter based on a Morlet wavelet function whose parameters are optimized based on maximum Kurtosis. Autocorrelation enhancement is applied to the filtered signal to further reduce the residual in-band noise and highlight the periodic impulsive feature. The proposed technique is used to analyze the experimental measured signal of investigated vehicle gearbox. An artificial fault is introduced in vehicle gearbox bearing an orthogonal placed groove on the inner race with the initial width of 0.6 mm approximately. The faulted bearing is a roller bearing located on the gearbox input shaft - on the clutch side.
Journal Article

Identification and Quantification of Phosphate Ester-Based Hydraulic Fluid in Jet Fuel

2019-03-13
Abstract Phosphate ester-based hydraulic fluids are commonly used in aviation, due to their fire-resistant properties. However, contamination of jet fuel with hydraulic fluid may cause serious engine failure, hot corrosion of metals, and swelling of elastomer and polymer seals. Identifying and quantifying hydraulic fluids in jet fuels using chromatography is challenging since common hydraulic fluids, such as ExxonMobil™ HyJet™ V and Skydrol™ LD-4, are composed of tri-butyl phosphate, the main peak of which overlaps with peaks from jet fuels in chromatograms. In this work, three techniques to separate and differentiate the jet fuel peaks from the tri-butyl phosphate peaks were developed. Two methods are based on a solid phase extraction (SPE) procedure followed by identification and quantification, which is carried out using a gas chromatograph equipped with a mass spectrometer or a flame ionization detector.
Journal Article

Determination of Influence of Parameters on Undercarriage Shock Absorber

2018-12-31
Abstract The simple oleo pneumatic (shock absorber) model was developed using the available computational fluid dynamics (CFD) program to understand how various parameters influence the performance of the undercarriage shock absorber. The study is divided into two parts: first part is focused on the influence of orifice geometry and the second part of the study is focused on the other parameters including chamber geometry. Both the studies are carried out using design of experiments (DOE) for the same output characteristics (response). In this study, the impacts on the flow behavior due to the orifice shapes are also studied. The results and the other outcomes are shown in the form of DOE parameters such as main effect plots and interaction plots.
Journal Article

Parameter Sensitivity and Process Time Reduction for Friction Element Welding of 6061-T6 Aluminum to 1500 MPa Press-Hardened Steel

2018-12-14
Abstract Conventional fusion joining techniques pervasive in the automotive industry are unable to effectively join aluminum and steel. To solve this problem, a technique termed friction element welding (FEW) has been developed, which is able to join any nonferrous top sheet material to a base steel layer, independent of the base layer strength. FEW works on the same principles as friction welding, as a steel element is pushed and rotated against a nonferrous top sheet to create frictional energy which softens and flows the material around the fastener shaft and under the fastener head, exposing the steel below. The element then contacts the steel and bonds through traditional friction welding. FEW is a four-step process (penetration, cleaning, welding, compression), with two to four parameters (endload, spindle speed, displacement transition, time transition) controlling each step.
Journal Article

Electric Vehicle with Multi-Speed Transmission: A Review on Performances and Complexities

2018-12-04
Abstract Electric vehicles (EVs) with multi-speed transmission offer improved performances compared to those with single speed transmission system in terms of top speed, fast acceleration, or gradeability along with driving range. In this study, relevant literature is extensively analyzed to explore the performances and associated complexities with multi-speed automatic manual/mechanical transmission (AMT) system in EVs. In EV powertrain, the only torque generator component is electric motor, which is not equally efficient throughout wider speed range. To the other end, vehicles need to run at different speeds in diverse driving conditions. The study shows that multi-speed transmission system enables efficient operation of electric motor by choosing an appropriate gear at different driving torque-speed demands and thus contributes to achieve desired vehicle performances at minimum energy consumption.
Journal Article

Numerical Investigation of the Characteristics of Spray/Wall Interaction with Hybrid Breakup Model by Considering Nozzle Exit Turbulence

2018-12-04
Abstract The spray/wall interaction plays a significant role on the mixture formation, combustion, and exhaust emissions. In the present study, the numerical code General Transport Equation Analysis (GTEA) is used to investigate the effect of fuel primary spray on the spray/wall interaction process. Taylor Analogy Breakup (TAB) model, Kelvin-Helmholtz-Rayleigh-Taylor (KH-RT) model, and Hybrid breakup (Hybrid) model are used to simulate the fuel spray process. By comparing the radius and height of the impinged spray, the performance of these breakup models is evaluated. Then, Bai and Gosman (BG) and Zhang and Jia (ZJ) spray/wall interaction models are implemented into GTEA code to describe the complicated spray/wall interaction process, and these interaction models are validated by the radius and height of the impinged spray and the size and velocity of the secondary droplets.
Journal Article

Simulation of the Effect of Altitude and Rotational Speed on Transient Temperatures of Rotating Components

2018-11-13
Abstract During vehicle development process, it is required to estimate potential thermal risk to vehicle components. Several authors have addressed this topic in earlier studies [1, 2, 3, 4, 5, 6]. For evaluation of potential thermal issues, it is desired to estimate the component temperature profile for a given duty cycle. Therefore, the temperature and exposure time at each temperature have to be estimated for each vehicle duty cycle. The duty cycle represents the customer usage of the vehicle for a variety of vehicle speeds and loadings. In this article, we focus on thermal simulation of rotating components such as prop shaft, drive shaft, and half shaft boots. Though these components temperatures can be measured in drive cell or road trips, the instrumentation is usually a complicated task. Most existing temperature sensors do not satisfy the needs because they either require physical contact or cannot withstand high-temperature environment in the vehicle underhood or underbody.
Journal Article

Railway Fastener Positioning Method Based on Improved Census Transform

2018-10-31
Abstract In view of the fact that the current positioning methods of railway fasteners are easily affected by illumination intensity, bright spots, and shadows, a positioning method with relative grayscale invariance is proposed. The median filter is used to remove the noise in order to reduce the adverse effects on the subsequent processing results, and the baffle seat edge features are enhanced by improved Census transform. The mean-shift clustering algorithm is used to classify the edges to weaken the interference by short lines. Finally, the Hough transform is used to quickly extract the linear feature of the baffle seat edge and achieve the exact position of the fastener with the prior knowledge. Experimental results show that the proposed method can accurately locate and have good adaptability under different illumination conditions, and the position accuracy is increased by 4.3% and 8%, respectively, in sunny and rainy days.
Journal Article

Comparative Performance of 12 Crankcase Oil Mist Separators

2018-10-31
Abstract Closed crankcase ventilation (CCV) systems are required in most automotive markets in order to meet emissions regulations. Such systems usually require a separator to recover oil and return it to the sump. Many end users fit improved separators in order to reduce intake/aftercooler contamination with soot/oil. This study measured clean and wet pressure drop and filter capture efficiency in 12 different crankcase oil mist separators which are commonly used for either original equipment (OE) or aftermarket fitment to passenger vehicles and four-wheel drives (≤200 kW). The filters tested spanned three different size/rating classes as well as included both branded and unbranded (imitation) models. In addition to filters, separators (often termed “catch cans”) and an OE cyclone separator were also examined. Testing was performed under controlled laboratory conditions using methods equivalent to previous work and current mist filter test standards.
Journal Article

Improvement in DCT Shaft Lubrication through CFD Method

2018-10-25
Abstract Dual-clutch transmission (DCT) output shaft 1 (OS1) mount position is higher than the transmission lubricant level. Needle bearings and idler gears on OS1-insufficient lubrication issues and the transmission lubrication system were investigated. In the design model, the transmission housing lubrication channel and oil guide component design were studied. For numerical analysis, the STAR-CCM+ software was used to simulate transmission internal complex oil-gas multiphase transient flow morphology that monitored the four bore oil churning volumes of OS1. Finally, lubrication test results affirm simulation predictions that idler gears, needle bearings, and synchronizer rings on OS1 obtain sufficient lubrication provided that a reliable method to inspect lubrication design functions is available.
Journal Article

Energy Consumption Test and Analysis Methodology for Heavy-Duty Vehicle Engine Accessories

2018-10-03
Abstract Fuel economy is a crucial parameter in long-haulage heavy-duty vehicles. Researchers tended to focus initially on engine combustion efficiency, while modern researchers turn their attention to the energy consumption of engine accessories in an attempt to enhance fuel economy. The accessories investigated in this study include the cooling fan, water pump, air compressor, power steering pump, air-conditioning (AC) compressor, and generator. Normally, accessory energy consumption analysis is based on rig data and simulation results. Here, we focus on the disparate test environments between the rig and vehicle to establish a novel steady power test method; the proposed method provides accurate accessory power data under different working conditions. A typical highway driving cycle is selected to collect accessory duty-cycle. The heavy-duty vehicle accessories’ energy consumption distribution under highway road conditions is obtained through the repeated road tests.
Journal Article

Investigation of Fatigue Life of Wheels in Commercial Vehicles

2018-08-21
Abstract In India, vehicle population increases every day along with road accidents by 2.5% every year. About 7.7% of accidents are caused by wheel separation, 60% of which are due to nut-related problems. Wheel separations in vehicles occur due to fastener issues and fatigue failures in bolts. A study of the reasons for and mechanisms of nut loosening showed that left-hand side wheels detached and fracture failure occurred in right-hand side studs. Fatigue life of wheels with Nord-Lock washer and without washer is determined by using numerical analysis as per the IS 9438 cornering fatigue test. These numerical results are compared with experimental results.
Journal Article

Structural Optimization of a Pickup Frame Combining Thickness, Shape and Feature Parameters for Lightweighting

2018-08-08
Abstract The methods for improving the torsion stiffness of a pickup chassis frame were discussed, including increasing the part thickness on frame, enlarging the cross section of rails, and adding bulkhead feature inside the rails. Sizing optimization was conducted to get the optimal thickness configuration for frame parts and meet the siffness requirement. The cross section of frame rails were parameterized and shape optimization was conduted to get the optimal rail cross sections for stiffness improvement. Additional bulkheads were added to the frame rails, and sizing optimization conducted to find the most effective bulkheads to add and their optimal gauge. A material efficiency ratio μ is used to evaluate the efficiency of a design change with respect to torsion stiffness. Among those torsion improvement methods, adding bulkhead feature gives the highest material efficiency ratio, but the stiffness improvement range is very limited.
Journal Article

Utilization of Man Power, Increment in Productivity by Using Lean Management in Kitting Area of Engine Manufacturing Facility - A Case Study

2018-08-08
Abstract The project of lean management is implemented in General Motors India Private Limited, Pune, India plant. The aim of the project is to improve manpower utilization by removing seven types of wastes using lean management system in kitting process. Lean manufacturing or management is the soul of Just-In-Time philosophy and is not new in Automobile manufacture sector where it born. Kitting area is analogs to the modern supermarket where required components, parts, consumables, subassemblies are kept in bins. These bins are placed in racks so that choosing right part at right time can be achieved easily. Video recording, in-person observation, feedback from online operators and other departments such as maintenance, control, supply chain etc. are taken. It is observed that the work content performed by current strength of operators can be performed by less number of operators. After executing this project, it was possible to reduce one operator and increase manpower utilization.
Journal Article

Conditioning Turbocharger Compressor Map Data for Use in Engine Performance Simulation

2018-08-08
Abstract Turbocharger compressor maps are used in engine performance modeling and simulation to predict engine air system operating conditions. Errors in compressor map data can result in inaccurate engine performance prediction. A method is described for conditioning compressor map data for use in engine performance simulation, by detecting and replacing suspect data points, and interpolating and extrapolating the map data. The method first characterizes enthalpy rise through the compressor, after removing data points likely influenced by heat transfer from turbine to compressor, using energy transfer coefficient vs. impeller outlet flow coefficient. This is done concurrently with estimating impeller outlet conditions using simplified geometry assumptions and a modified definition for compressor stage reaction.
Journal Article

Dynamic Particle Generation/Shedding in Lubricating Greases Used in Aerospace Applications

2018-08-03
Abstract The purpose of this study is to examine the phenomenon of Dynamic Particle Generation in lubricating greases that are used in a variety of critical Aerospace mechanisms. Particle Generation occurs in bearings, ball screws, and other mechanical devices where dynamic conditions are present. This should not be confused with outgassing as particle generation is unrelated to the pressure effects on a system. This is a critical factor in many systems as particle generation can contaminate systems or processes causing them to fail. These failures can lead to excessive costs, production failure, and equipment damage. In this study, several greases made from Multiplyalkylated Cyclopentane and Perfluoropolyether base fluids were tested to evaluate their particle generation properties. This particle generation phenomenon was studied using a custom test rig utilizing a high precision cleanroom ball-screw to simulate true application conditions.
Journal Article

A Method for Turbocharging Single-Cylinder, Four-Stroke Engines

2018-07-24
Abstract Turbocharging can provide a low cost means for increasing the power output and fuel economy of an internal combustion engine. Currently, turbocharging is common in multi-cylinder engines, but due to the inconsistent nature of intake air flow, it is not commonly used in single-cylinder engines. In this article, we propose a novel method for turbocharging single-cylinder, four-stroke engines. Our method adds an air capacitor-an additional volume in series with the intake manifold, between the turbocharger compressor and the engine intake-to buffer the output from the turbocharger compressor and deliver pressurized air during the intake stroke. We analyzed the theoretical feasibility of air capacitor-based turbocharging for a single-cylinder engine, focusing on fill time, optimal volume, density gain, and thermal effects due to adiabatic compression of the intake air.
X