Refine Your Search

Topic

Search Results

Journal Article

Hydrogen Injection Position Impact: Experimental Analysis of Central Direct Injection and Side Direct Injection in Engines

2024-04-18
Abstract A detailed investigation was carried out on the performance, combustion, and emissions of a single-cylinder direct injection hydrogen spark ignition (SI) engine with either a side-mounted direct injection (SDI) or a centrally installed direct injection (CDI) injector. The first part of the study analyzed the performance and emissions characteristics of CDI and SDI engine operations with different injection timings and pressures. This was followed by comparing the engine’s performance and emissions of the CDI and SDI operations at different engine speeds and relative air-to-fuel ratios (lambda) with the optimized injection pressure and timings. Furthermore, the performance and emission attributes of the hydrogen engine with the CDI and SDI setups were conducted at a fixed λ value of 2.75 across a broad spectrum of engine loads. The study’s main outcome demonstrates that both direct injection systems produced near-zero CO2, CO, and HC emissions.
Journal Article

Suitability Study of Biofuel Blend for Light Commercial Vehicle Application under Real-World Transient Operating Conditions

2024-04-10
Abstract Driving schedule of every vehicle involves transient operation in the form of changing engine speed and load conditions, which are relatively unchanged during steady-state conditions. As well, the results from transient conditions are more likely to reflect the reality. So, the current research article is focused on analyzing the biofuel-like lemon peel oil (LPO) behavior under real-world transient conditions with fuel injection parameter MAP developed from steady-state experiments. At first, engine parameters and response MAPs are developed by using a response surface methodology (RSM)-based multi-objective optimization technique. Then, the vehicle model has been developed by incorporating real-world transient operating conditions. Finally, the developed injection parameters and response MAPs are embedded in the vehicle model to analyze the biofuel behavior under transient operating conditions.
Journal Article

Research on Improving the Efficiency of Centrifugal Pump Using the Different Vane Surfaces of Bearings

2024-01-29
Abstract With the use of the stepped surface of the friction pairs of the stepped bearings (SB) in the high-speed centrifugal pumps, its liquid film thickness is suddenly changed and it was discontinuously distributed in the direction of motion of pump. To ensure the continuity of the liquid film thickness and enhance the lubrication efficiency of the pump, based on the lubrication model of the SB, two other structures of the inclined surfaces [inclined bearings (IB)] and curved surfaces [curved bearings (CB)] used to replace stepped surfaces of the SB are investigated, respectively. Under the same conditions of the minimum thickness of the liquid film and initial dimensions of the sliding friction pairs, the influence of both the thickness ratio (α) of the liquid film and dimension ratio (β) in the direction of motion of SB, IB, and CB on the bearing capacity and friction coefficient of the liquid film are simulated and analyzed, respectively.
Journal Article

Machine Learning-Based Modeling and Predictive Control of Combustion Phasing and Load in a Dual-Fuel Low-Temperature Combustion Engine

2024-01-18
Abstract Reactivity-controlled compression ignition (RCCI) engine is an innovative dual-fuel strategy, which uses two fuels with different reactivity and physical properties to achieve low-temperature combustion, resulting in reduced emissions of oxides of nitrogen (NOx), particulate matter, and improved fuel efficiency at part-load engine operating conditions compared to conventional diesel engines. However, RCCI operation at high loads poses challenges due to the premixed nature of RCCI combustion. Furthermore, precise controls of indicated mean effective pressure (IMEP) and CA50 combustion phasing (crank angle corresponding to 50% of cumulative heat release) are crucial for drivability, fuel conversion efficiency, and combustion stability of an RCCI engine.
Journal Article

A Review of Cavitation Phenomenon and Its Influence on the Spray Atomization in Diesel Injector Nozzles

2023-12-15
Abstract In view of the combustion efficiency and emission performance, various new clean combustion modes put forward higher requirements for the performance of the fuel injection system, and the cavitating two-phase flow characteristics in the injector nozzle have a significant impact on the spray atomization and combustion performance. This article comprehensively discusses and summarizes the factors that affect cavitation and the effectiveness of cavitation, and presents the research status and existent problems under each factor. Among them, viscosity factors are a hot research topic that researchers are passionate about, and physical properties factors still have the value of further in-depth research. However, the importance of material surface factors ranks last since the nozzle material was determined. Establishing a more comprehensive cavitation–atomization model considering various factors is the focus of research on cavitation phenomena.
Journal Article

Combustion Optimization of a Premixed Ultra-Lean Blend of Natural Gas and Hydrogen in a Dual Fuel Engine Running at Low Load

2023-12-01
Abstract The numerical study presented in this article is based on an automotive diesel engine (2.8 L, 4-cylinder, turbocharged), considering a NG–H2 blend with 30 vol% of H2, ignited by multiple diesel fuel injections. The 3D-CFD investigation aims at improving BTE, CO, and UHC emissions at low load, by means of an optimization of the diesel fuel injection strategy and of the in-cylinder turbulence (swirl ratio, SR). The operating condition is 3000 rpm – BMEP = 2 bar, corresponding to about 25% of the maximum load of a gen-set engine, able to deliver up to 83 kW at 3000 rpm (rated speed). The reference diesel fuel injection strategy, adopted in all the previous numerical and experimental studies, is a three-shot mode. The numerical optimization carried out in this study consisted in finding the optimal number of injections per cycle, as well as the best timing of each injection and the fuel mass split among the injections.
Journal Article

Methanol (M85) Port-Fuel-Injected Spark Ignition Motorcycle Engine Development—Part 2: Dynamic Performance, Transient Emissions, and Catalytic Converter Effectiveness

2023-10-27
Abstract Methanol is emerging as an alternate internal combustion engine fuel. It is getting attention in countries such as China and India as an emerging transport fuel. Using methanol in spark ignition engines is easier and more economical than in compression ignition engines via the blending approach. M85 (85% v/v methanol and 15% v/v gasoline) is one of the preferred blends with the highest methanol concentration. However, its physicochemical properties significantly differ from gasoline, leading to challenges in operating existing vehicles. This experimental study addresses the challenges such as cold-start operation and poor throttle response of M85-fueled motorcycle using a port fuel injection engine. In this study, M85-fueled motorcycle prototype is developed with superior performance, similar/better drivability, and lower emissions than a gasoline-fueled port-fuel-injected motorcycle.
Journal Article

Investigations on Multiple Injection Strategies in a Common Rail Diesel Engine Using Machine Learning and Image-Processing Techniques

2023-10-26
Abstract The present study examines the effect of the multiple injection strategies in a common rail diesel engine using machine learning, image processing, and object detection techniques. The study demonstrates a novel approach of utilizing image-processing tools to gain information from heat release rates and in-cylinder visualizations from experimental or computational studies. The 3D CFD combustion and emission predictions of a commercial code ANSYS FORTE© are validated with small-bore common rail diesel engine data with known injection strategies. The validated CFD tool is used as a virtual plant model to optimize the injection schedule for reducing oxides of nitrogen (NOx) and soot emissions using an apparent heat release rate image-based machine learning tool. A methodology of the machine learning tool is quite helpful in predicting the NO–soot trade-off.
Journal Article

TOC

2023-10-24
Abstract TOC
Journal Article

Experimental Study of High-Pressure Reacting and Non-reacting Sprays for Various Gasoline Blends

2023-10-09
Abstract Research into efficient internal combustion (IC) engines need to continue as the majority of vehicles will still be powered by IC or hybrid powertrains in the foreseeable future. Recently, lean-burn gasoline compression ignition (GCI) with high-pressure direct injection has been receiving considerable attention among the research community due to its ability to improve thermal efficiency and reduce emissions. To maximize GCI benefits in engine efficiency and emissions tradeoff, co-optimization of the combustion system and fuel formation is required. Thus, it is essential to study the spray characteristics of different fuels under engine-like operating conditions. In this work, high-pressure spray characteristics are experimentally studied for three blends of gasoline, namely, Naphtha, E30, and research octane number (RON) 98. A single-hole custom-built injector was used to inject fuel into a constant volume chamber with injection pressure varying from 40 MPa to 100 MPa.
Journal Article

Impact of Passive Pre-Chamber Nozzle Diameter on Jet Formation Patterns and Dilution Tolerance in a Constant-Volume Optical Engine

2023-09-11
Abstract Pre-chamber jet ignition technologies have been garnering significant interest in the internal combustion engine field, given their potential to deliver shorter burn durations, increased combustion stability, and improved dilution tolerance. However, a clear understanding of the relationship between pre-chamber geometry, operating condition, jet formation, and engine performance in light-duty gasoline injection engines remains under-explored. Moreover, research specifically focusing on high dilution levels and passive pre-chambers with optical accessibility is notably scarce. This study serves to bridge these knowledge gaps by examining the influence of passive pre-chamber nozzle diameter and dilution level on jet formation and engine performance.
Journal Article

Optimizing Hydrogen Fueling Infrastructure Plans on Freight Corridors for Heavy-Duty Fuel Cell Electric Vehicles

2023-08-12
Abstract The development of a future hydrogen energy economy will require the development of several hydrogen market and industry segments including a hydrogen-based commercial freight transportation ecosystem. For a sustainable freight transportation ecosystem, the supporting fueling infrastructure and the associated vehicle powertrains making use of hydrogen fuel will need to be co-established. This article introduces the OR-AGENT (Optimal Regional Architecture Generation for Electrified National Transportation) tool developed at the Oak Ridge National Laboratory, which has been used to optimize the hydrogen refueling infrastructure requirements on the I-75 corridor for heavy-duty (HD) fuel cell electric commercial vehicles (FCEV).
Journal Article

Driveline System Effects on Powertrain Mounting Optimization for Vibration Isolation under Actual Vehicle Conditions

2023-08-04
Abstract Vehicle vibration is the key consideration in the early stage of vehicle development. The most dynamic system in a vehicle is the powertrain system, which is a source of various frequency vibration inputs to the vehicle. Mostly for powertrain mounting system design, only the uncoupled powertrain system is considered. However, in real situations, other subsystems are also attached to the powertrain unit. Thereby, assuming only the powertrain unit ignores the dynamic interactions among the powertrain and other systems. To address this shortcoming, a coupled powertrain and driveline mounting system problem is formulated and examined. This 16 DOF problem is constructed around a case of a front engine-based powertrain unit attached to the driveline system, which as an assembly resting on other systems such as chassis, suspensions, axles, and tires.
Journal Article

A Novel Experiment Approach for Measurement Breakup Length, Cone Angle, Sheet Velocity, and Film Thickness in Swirl Air-Blast Atomizers

2023-07-31
Abstract Measuring the dynamic parameters of liquid fragments generated in the near-field of atomizing sprays poses a significant challenge due to the random nature of the fragments, the instability of the spray, and the limitations of current measuring technology. Precise determination of these parameters can aid in improving the control of the atomization process, which is necessary for providing suitable spray structures with appropriate flow rates and droplet size distributions for various applications such as those used in heat engines. In piston and gas turbine engines, controlling spray characteristics such as penetration, cone angle, particle size, and droplet size distribution is crucial to improve combustion efficiency and decrease exhaust emissions. This can be accomplished by adjusting the structural and/or operating parameters of the fuel supply system.
Journal Article

Exploring the Benefits of Karanja-Oil-Derived Biodiesel-Water Emulsion as a Potential Fuel for Diesel Engines Operated with High-Pressure Fuel Injection Systems

2023-07-21
Abstract Biodiesel is a suitable alternative to diesel because of its carbon neutrality, renewability, lubricity, and lower pollutant emissions. However, extensive research indicates higher oxides of nitrogen (NOx) emissions with biodiesel. A practical method to combat this problem is utilizing water and biodiesel as emulsions. The effect of biodiesel-water emulsion in high-pressure fuel injection systems is not fully explored in the existing literature. The present study addresses this research gap by utilizing biodiesel-water emulsions in a modified light-duty diesel engine. The governor-controlled injection system was adapted to a fully flexible electronic system capable of high-pressure injection. Unlike other literature studies, the fuel injection timings were optimized with biodiesel-water emulsions to maximize brake thermal efficiency (bte) at every load condition.
Journal Article

Ducted Fuel Injection Provides Consistently Lower Soot Emissions in Sweep to Full-Load Conditions

2023-07-14
Abstract Earlier studies have proven how ducted fuel injection (DFI) substantially reduces soot for low- and mid-load conditions in heavy-duty engines, without significant adverse effects on other emissions. Nevertheless, no comprehensive DFI study exists showing soot reductions at high- and full-load conditions. This study investigated DFI in a single-cylinder, 1.7-L, optical engine from low- to full-load conditions with a low-net-carbon fuel consisting of 80% renewable diesel and 20% biodiesel. Over the tested load range, DFI reduced engine-out soot by 38.1–63.1% compared to conventional diesel combustion (CDC). This soot reduction occurred without significant detrimental effects on other emission types. Thus, DFI reduced the severity of the soot–NOx tradeoff at all tested conditions.
Journal Article

Shot-to-Shot Deviation of a Common Rail Injection System Operating with Cooking-Oil-Residue Biodiesel

2023-06-28
Abstract The shot-to-shot variations in common rail injection systems are primarily caused by pressure wave oscillations in the rail, pipes, and injector body. These oscillations are influenced by fuel physical properties, injector needle movement, and pressure and suction control valve activations. The pressure waves are generated by pump actuation and injector needle movement, and their frequency and amplitude are determined by fluid properties and flow path geometry. These variations can result in cycle-to-cycle engine fluctuations. In multi-injection and split-injection strategies, the pressure oscillation from the first shot can impact the hydraulic characteristics of subsequent shots, resulting in variations in injection rate and amount. This is particularly significant when using alternative fuels such as biodiesel, which aim to reduce emissions while maintaining fuel atomization quality.
Journal Article

Development of Data-Driven Models for the Prediction of Fuel Effects on Diesel Engine Performance and Emissions

2023-04-20
Abstract A modelling tool has been developed for the prediction of fuel effects on the performance and exhaust emissions of a heavy-duty diesel engine. Recurrent neural network models with duty-cycle, engine control, and fuel property parameters as inputs were trained with transient test data from a 15-liter heavy-duty diesel engine equipped with a common-rail fuel injection system and a variable geometry turbocharger. The test fuels were formulated by blending market diesel fuels, refinery components, and biodiesel to provide variations in preselected fuel properties, namely, hydrogen-to-carbon (H/C) ratio, oxygen-to-carbon (O/C) ratio, derived cetane number (CN), viscosity, and mid- and end-point distillation parameters. Care was taken to ensure that the correlation between these fuel properties in the test fuel matrix was minimized to avoid confounding model input variables.
Journal Article

Flame Front Vector and Turbulence Analysis for Varied Equivalence Ratios in an Optical Direct-Injection Spark-Ignition Engine

2023-04-18
Abstract Homogenous lean combustion in a direct-injection spark-ignition (DISI) engine is a promising pathway to achieve significantly improved fuel economy, making already competitive petrol engines even more attractive as a future powertrain option. This study aims to enhance the fundamental understanding of flame growth occurring in a DISI engine with varied charge equivalence ratios of 1.0 to 0.6 while keeping a low compression ratio of 10.5, a typical side-mounted injector, and early injected homogenous charge conditions. A new flame front vector analysis is performed using the flame image velocimetry (FIV) method applied to 100 cycles of high-speed flame movies with trackable contrast variations and pattern changes in the flame boundary. A spatial filtering method is used to decompose the bulk flow component and high-frequency flow component with the latter being interpreted as turbulence.
Journal Article

A Review of Ultra-lean and Stratified Charged Combustion in Natural Gas Spark Ignition Engines

2023-03-15
Abstract Natural gas (NG) can be compressed to a high pressure of around 200 bar for use in engines and other applications. Compressed natural gas (CNG) contains 87–92% methane (CH4) and has a low carbon-to-hydrogen ratio compared to other hydrocarbon (HC) fuels. Due to this, it can potentially reduce carbon dioxide (CO2) emissions by more than 20% compared to conventional fuels like diesel or gasoline. This makes CNG one of the most environmentally friendly fuels for internal combustion engines (ICEs). To improve the thermal efficiency of ICEs, higher compression ratios (CRs) and leaner combustion are essential. Since CNG is a gaseous fuel, it has several advantages over liquid fuels due to its favorable physical and chemical properties. A few of these advantages are minimal fuel evaporation issues, a low-carbon content in the fuel composition and a high-octane number. The CNG high-octane number allows for a high CR, resulting in higher thermal efficiency and lower emissions.
X