Refine Your Search

Topic

Search Results

Journal Article

How Drivers Lose Control of the Car

2024-03-06
Abstract After a severe lane change, a wind gust, or another disturbance, the driver might be unable to recover the intended motion. Even though this fact is known by any driver, the scientific investigation and testing on this phenomenon is just at its very beginning, as a literature review, focusing on SAE Mobilus® database, reveals. We have used different mathematical models of car and driver for the basic description of car motion after a disturbance. Theoretical topics such as nonlinear dynamics, bifurcations, and global stability analysis had to be tackled. Since accurate mathematical models of drivers are still unavailable, a couple of driving simulators have been used to assess human driving action. Classic unstable motions such as Hopf bifurcations were found. Such bifurcations seem almost disregarded by automotive engineers, but they are very well-known by mathematicians. Other classic unstable motions that have been found are “unstable limit cycles.”
Journal Article

Lithium-Ion Battery Thermal Event and Protection: A Review

2023-12-01
Abstract The exponentially growing electrification market is driving demand for lithium-ion batteries (LIBs) with high performance. However, LIB thermal runaway events are one of the unresolved safety concerns. Thermal runaway of an individual LIB can cause a chain reaction of runaway events in nearby cells, or thermal propagation, potentially causing significant battery fires and explosions. Such a safety issue of LIBs raises a huge concern for a variety of applications including electric vehicles (EVs). With increasingly higher energy-density battery technologies being implemented in EVs to enable a longer driving mileage per charge, LIB safety enhancement is becoming critical for customers. This comprehensive review offers an encompassing overview of prevalent abuse conditions, the thermal event processes and mechanisms associated with LIBs, and various strategies for suppression, prevention, and mitigation.
Journal Article

Optimization of Dual Extrusion Fused Filament Fabrication Process Parameters for 3D Printed Nylon-Reinforced Composites: Pathway to Mobile and Transportation Revolution

2023-11-14
Abstract Nylon polymer with an optimal blend of Kevlar, fiberglass, and high-speed, high temperature (HSHT) Fiberglass offers improved characteristics such as flexural strength, wear resistance, electrical insulation, shock absorption, and a low friction coefficient. For this reason, the polymer composite manufactured by combining HSHT, Kevlar, and fiberglass with nylon as base material will expand the uses of nylon in the aerospace, automotive, and other industrial applications related to ergonomic tools, assembly trays, and so forth. The proposed work was carried out to investigate the continuous fiber reinforcement (CFR) in nylon polymer using a dual extrusion system. Twenty experimental runs were designed using a face-centered central composite design (FCCD) approach to analyze the influence of significant factors such as reinforcement material, infill pattern, and fiber angle on the fabricated specimen as per American Society for Testing Materials (ASTM) standards.
Journal Article

Performance Analysis of Cooperative Truck Platooning under Commercial Operation during Canadian Winter Season

2023-11-14
Abstract The cooperative platoon of multiple trucks with definite proximity has the potential to enhance traffic safety, improve roadway capacity, and reduce fuel consumption of the platoon. To investigate the truck platooning performance in a real-world environment, two Peterbilt class-8 trucks equipped with cooperative truck platooning systems (CTPS) were deployed to conduct the first-of-its-kind on-road commercial trial in Canada. A total of 41 CTPS trips were carried out on Alberta Highway 2 between Calgary and Edmonton during the winter season in 2022, 25 of which were platooning trips with 3 to 5 sec time gaps. The platooning trips were performed at ambient temperatures from −24 to 8°C, and the total truck weights ranged from 16 to 39 tons. The experimental results show that the average time gap error was 0.8 sec for all the platooning trips, and the trips with the commanded time gap of 5 sec generally had the highest variations.
Journal Article

Comparative Study on the Fatigue Behavior of Jute-Wool Felt/Epoxy Hybrid and Glass Fiber/Epoxy Composite

2023-08-10
Abstract Currently, there is a growing tendency to incorporate natural fibers in composites due to their affordability, lightweight nature, and eco-friendliness. Researchers are continuously exploring new materials that offer improved mechanical properties for a broader range of applications. In this work, an experimental investigation on tensile and fatigue behavior of jute-wool felt-reinforced epoxy hybrid laminate is carried, in addition to an E-glass fiber-reinforced epoxy laminate that helps in comparison. Constant amplitude tensile fatigue test is conducted for 80%, 70%, and 60% of the ultimate load of respective composites at a stress ratio of 0.1 and frequency of 7 Hz for both laminates. The jute-wool felt composite showed good fatigue resistance. Though glass fiber composite showed higher tensile strength, jute-wool felt composite exhibits higher fatigue performance than glass fiber composites at higher stress levels.
Journal Article

Electrically Interconnected Suspension and Related Technologies: A Comprehensive Review

2023-08-10
Abstract The electrically interconnected suspension (EIS) is a novel suspension system that has gained attention due to its potential to improve vehicle vibration control. This article provides a comprehensive review of EIS and related technologies. It starts with an overview of the research on hydraulic interconnected suspension (HIS) and its limitations. Then, it discusses the development of the electromagnetic suspension (EMS) and its advantages in adjusting mechanical characteristics. The article focuses on the electrical network and decoupling control characteristics of EIS, demonstrating the principle of synchronous decoupling control of multiple vibration modes. A comparison of the structure and control characteristics of EIS and HIS highlights the advantages of EIS in vehicle vibration control.
Journal Article

A Review of Intelligence-Based Vehicles Path Planning

2023-07-28
Abstract Numerous researchers are committed to finding solutions to the path planning problem of intelligence-based vehicles. How to select the appropriate algorithm for path planning has always been the topic of scholars. To analyze the advantages of existing path planning algorithms, the intelligence-based vehicle path planning algorithms are classified into conventional path planning methods, intelligent path planning methods, and reinforcement learning (RL) path planning methods. The currently popular RL path planning techniques are classified into two categories: model based and model free, which are more suitable for complex unknown environments. Model-based learning contains a policy iterative method and value iterative method. Model-free learning contains a time-difference algorithm, Q-learning algorithm, state-action-reward-state-action (SARSA) algorithm, and Monte Carlo (MC) algorithm.
Journal Article

A Literature Review of Simulation Fidelity for Autonomous-Vehicle Research and Development

2023-05-25
Abstract This article explores the value of simulation for autonomous-vehicle research and development. There is ample research that details the effectiveness of simulation for training humans to fly and drive. Unfortunately, the same is not true for simulations used to train and test artificial intelligence (AI) that enables autonomous vehicles to fly and drive without humans. Research has shown that simulation “fidelity” is the most influential factor affecting training yield, but psychological fidelity is a widely accepted definition that does not apply to AI because it describes how well simulations engage various cognitive functions of human operators. Therefore, this investigation reviewed the literature that was published between January 2010 and May 2022 on the topic of simulation fidelity to understand how researchers are defining and measuring simulation fidelity as applied to training AI.
Journal Article

Process Parameter Optimization of Abrasive Jet, Ultrasonic, Laser Beam, Electrochemical, and Plasma Arc Machining Processes Using Optimization Techniques: A Review

2023-04-04
Abstract A comprehensive literature review of the optimization techniques used for the process parameter optimization of Abrasive Jet Machining (AJM), Ultrasonic Machining (USM), Laser Beam Machining (LBM), Electrochemical Machining (ECM), and Plasma Arc Machining (PAM) are presented in this review article. This review article is an extension of the review work carried out by previous researchers for the process parameter optimization of non-traditional machining processes using various advanced optimization algorithms. The review period considered for the same is from 2012 to 2022. The prime motive of this review article is to find out the sanguine effects of various optimization techniques used for the optimization of various considered objectives of selected non-traditional machining processes in addition to deemed materials and foremost process parameters.
Journal Article

Use of Solar Photovoltaic Energy Systems in Department of Transportation Facilities: A Review of Practice and Preliminary Assessment for Virginia Department of Transportation

2022-01-28
Abstract Renewable energy sources provide an excellent opportunity for state departments of transportation (DOTs) to benefit from a dual use of land while providing flexible, resilient, affordable, and environmentally responsible modes of generation. Solar photovoltaic (PV) systems are particularly useful in this regard. This study presents a literature review on the types of solar project partnerships, application of solar PV systems by DOTs in the United States (U.S.), solar energy potential, energy policies, and incentives in Virginia. In addition, a feasibility assessment of installing solar PV systems at six (6) Virginia DOT (VDOT)-owned sites is presented. The review of the literature indicated that twenty state DOTs have implemented or are developing solar projects using their facilities. The feasibility assessment showed the benefits of installing solar PV systems at VDOT facilities.
Journal Article

A Systematic Mapping Study on Security Countermeasures of In-Vehicle Communication Systems

2021-11-16
Abstract The innovations of vehicle connectivity have been increasing dramatically to enhance the safety and user experience of driving, while the rising numbers of interfaces to the external world also bring security threats to vehicles. Many security countermeasures have been proposed and discussed to protect the systems and services against attacks. To provide an overview of the current states in this research field, we conducted a systematic mapping study (SMS) on the topic area “security countermeasures of in-vehicle communication systems.” A total of 279 papers are identified based on the defined study identification strategy and criteria. We discussed four research questions (RQs) related to the security countermeasures, validation methods, publication patterns, and research trends and gaps based on the extracted and classified data. Finally, we evaluated the validity threats and the whole mapping process.
Journal Article

Processing of Aluminium/Boron Carbide Composites and Functionally Graded Materials: A Literature Review

2021-11-03
Abstract Aluminum boron carbide (Al-B4C) composites have been a popular choice among scientists and designers for high-performance strength-to-weight ratio engineering applications. Requirements for such applications are met due to enhanced microstructure, mechanical properties, and ease of processing conditions. The performance and application of these composites are mostly dependent on certain parameters, like composition ratios of reinforcing particles, their sizes and wettability, the presence of additional phases, etc. Prominently, efforts are also being made to synthesize Al-B4C as functionally graded materials (FGMs) that have the potential to cater to the needs of advanced engineering applications and can facilitate new dimensions in the field of aluminum matrix composites (AMCs).
Journal Article

Integration of Solar-Power in Electric Vehicle Industry

2021-11-03
Abstract The electric vehicle market is expected to put a large strain on the existing electricity grid. Additionally, the majority of grid electricity is produced from the combustion of fossil fuels, negating the environmental benefits of electric vehicles. As such, it is necessary to evaluate the “green” options that will allow electric vehicles to break away from the grid—solar power. Solar power uses photovoltaic cells to convert sunlight into electricity, which can then go into recharging a car’s battery. Its existing usage has been limited due to cost and efficiency concerns; however, recent improvements in technology have made them viable. In particular, new materials have driven the cost down to $0.30 per Watt. Meanwhile, different thin-cell silicon materials are achieving efficiencies in excess of 20%. This article evaluates these advances and analyzes the applicability of solar-power for vehicles.
Journal Article

A Novel Fitting Method of Electrochemical Impedance Spectroscopy for Lithium-Ion Batteries Based on Random Mutation Differential Evolution Algorithm

2021-10-28
Abstract Electrochemical impedance spectroscopy (EIS) is widely used to diagnose the state of health (SOH) of lithium-ion batteries. One of the essential steps for the diagnosis is to analyze EIS with an equivalent circuit model (ECM) to understand the changes of the internal physical and chemical processes. Due to numerous equivalent circuit elements in the ECM, existing parameter identification methods often fail to meet the requirements in terms of identification accuracy or convergence speed. Therefore, this article proposes a novel impedance model parameter identification method based on the random mutation differential evolution (RMDE) algorithm. Compared with methods such as nonlinear least squares, it does not depend on the initial values of the parameters. The method is compared with chaos particle swarm optimization (CPSO) algorithm and genetic algorithm (GA), showing advantages in many aspects.
Journal Article

Expert’s Heuristic Biases in Airport Predictive Risk Assessments

2021-10-12
Abstract Expert perceptions have been increasingly used to perform risk assessments in airport predictive risk assessments in recent years. Although it is known that biases are less influential in groups of experts when compared to laypeople, they still can be residually present in such tasks with this specific group. Therefore, this article aims to propose (1) the pragmatic organization of knowledge about the biases that may affect airport risk assessments by groups of experts and (2) which of them most often arise in this type of analysis and at what intensity. For the development of the work, we carried out a dense bibliographic review of the theme. Later, we performed a predictive risk assessment and a survey, with the support of an experienced group of 30 experts from Brazilian regulatory agency and airport operators.
Journal Article

A Review Paper on Recent Research of Noise and Vibration in Electric Vehicle Powertrain Mounting System

2021-10-01
Abstract The Noise, Vibration, and Harshness (NVH) performance of automotive powertrain (PT) mounts involves the PT source vibration, PT mount stiffness, road input, and overall transfer path design. Like safety, performance, and durability driving dynamics, vehicle-level NVH also plays a major contributing factor for electric vehicle (EV) refinement. This article highlights the recent research on PT mounting-related NVH controls on electric cars. This work’s main contribution lies in the comparative study of the internal combustion engine (ICE)-based PT mounting and EV-based PT mounting system (PMS) with specific EV challenges. Various literature on PT mounts from the passive, semi-active, and active mounting systems are studied. The parameter optimization technique for mount stiffness and location by various research papers is summarized to understand the existing methodologies and research gap in EV application.
Journal Article

Effect of Thermal Conditions on Fatigue Resistance of One Automotive Day Time Running Light Housing Made of Polycarbonate Material

2021-08-31
Abstract The main aim of this study is to understand the effect of thermal conditions on the fatigue resistance of one automotive Daytime Running Lamp (DRL) housing made of Polycarbonate (PC) material. Automotive lighting products are made of mostly thermoplastic materials. Thermoplastic materials have mechanical properties varying significantly by temperature. As a result, thermal conditions at service life must be considered before evaluating the mechanical performance of automotive lighting products. In this study, thermal finite element analysis (FEA) has been done in order to understand the temperature distribution on DRL components at different thermal environments. Thermal map files representing the temperature distributions of the DRL components have been extracted and entered as load inputs into the modal FEA to find out the resonance frequencies. Using material properties varying by temperature, resonance frequencies of the DRL have been found by modal analysis and compared.
Journal Article

TOC

2021-08-08
Abstract TOC
Journal Article

Knock: A Century of Research

2021-07-28
Abstract Knock is one of the main limitations on increasing spark-ignition (SI) engine efficiency. This has been known for at least 100 years, and it is still the case today. Knock occurs when conditions ahead of the flame front in an SI engine result in one or more autoignition events in the end gas. The autoignition reaction rate is typically much higher than that of the flame-front propagation. This may lead to the creation of pressure waves in the combustion chamber and, hence, an undesirable noise that gives knock its name. The resulting increased mechanical and thermal loading on engine components may eventually lead to engine failure. Reducing the compression ratio lowers end-gas temperatures and pressures, reducing end-gas reactivity and, hence, mitigating knock. However, this has a detrimental effect on engine efficiency.
X