Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Development of Electrical-Electronic Controls for a Gasoline Direct Injection Compression Ignition Engine

2016-04-05
2016-01-0614
Delphi is developing a new combustion technology called Gasoline Direct-injection Compression Ignition (GDCI), which has shown promise for substantially improving fuel economy. This new technology is able to reuse some of the controls common to traditional spark ignition (SI) engines; however, it also requires several new sensors and actuators, some of which are not common to traditional SI engines. Since this is new technology development, the required hardware set has continued to evolve over the course of the project. In order to support this development work, a highly capable and flexible electronic control system is necessary. Integrating all of the necessary functions into a single controller, or two, would require significant up-front controller hardware development, and would limit the adaptability of the electronic controls to the evolving requirements for GDCI.
Technical Paper

Transient Simulation of DGI Engine Injector with Needle Movement

2002-10-21
2002-01-2663
Utilization of direct injection systems is one of the most promising technologies for fuel economy improvement for SI engine powered passenger cars. Engine performance is essentially influenced by the characteristics of the injection equipment. This paper will present CFD analyses of a swirl type GDI injector carried out with the Multiphase Module of AVL's FIRE/SWIFT CFD code. The simulations considered three phases (liquid fuel, fuel vapor, air) and mesh movement. Thus the transient behavior of the injector can be observed. The flow phenomena known from measurement and shown by previous simulation work [2, 7, 10, 11] were reproduced. In particular the simulations shown in this paper could explain the cause for the outstanding atomization characteristics of the swirl type injector, which are caused by cavitation in the nozzle hole.
Technical Paper

Impact of Alkali Metals on the Performance and Mechanical Properties of NOx Adsorber Catalysts

2002-03-04
2002-01-0734
Performance of two types of NOx adsorber catalysts, one based on Ba and the other based on Ba with alkali metals, was compared fresh and after thermal aging. Incorporation of sodium(Na), potassium(K) and cesium(Cs) into NOx adsorber washcoat containing barium significantly increases the NOx conversions in the temperature range of 350-600°C over that of the alkali metal free NOx adsorber catalysts. NOx performance benefit and HC performance penalty were observed on both engine dynamometer and vehicle tests for the “Ba+alkali metals” NOx adsorber catalysts. “Ba+alkali metals” NOx adsorber catalysts also demonstrate superior sulfur resistance with better NOx performance after repeated sulfur poisonings and desulfations over the “Ba based” NOx adsorber catalysts.
Technical Paper

Comparative Study of Hybrid Powertrain Strategies

2001-08-20
2001-01-2501
Hybrid electric vehicles have the potential to reduce air pollution and improve fuel economy without sacrificing the present conveniences of long range and available infrastructure that conventional vehicles offer. Hybrid vehicles are generally classified as series or parallel hybrids. A series hybrid vehicle is essentially an electric vehicle with an on-board source of power for charging the batteries. In a parallel hybrid vehicle, the engine and the electric motor can be used to drive the vehicle simultaneously. There are various possible configurations of parallel hybrid vehicles depending on the role of the electric motor/generator and the engine. In this paper, a comparative study of the drivetrains of five different hybrid vehicles is presented. The underlying design architectures are examined, with analysis as to the tradeoffs and advantages represented in these architectures.
Technical Paper

Consumers, Electronics, and the Link to Hybrid Vehicles and the Environment

2000-11-01
2000-01-C045
The interdependence of consumer features, new electronic and electrical architectures and hybrid propulsion systems are examined. There are two major forces driving future vehicle electronic and electrical systems, one is consumer demand for comfort and safety, and two is the demand for reduced fuel consumption and emissions. These forces are linked by the use of electronics to control vehicle energy generation and usage while providing managed solutions to these demands. Automobile consumer features are discussed and the case is made that these features will require more electric power to be installed on the vehicle. The presence of this increased electric power will then enable the hybrid vehicle functions that will benefit fuel economy and emissions performance.
Technical Paper

Evaluation of Corona Reactors of Several Geometries for a Plasma Assisted Nitrogen Oxide Emission Reduction Device

2000-10-16
2000-01-2899
Proposed vehicle emissions regulations for the near future have prompted automotive manufactures and component suppliers to focus heavily on developing more efficient exhaust aftertreatment devices to lower emissions from spark and compression ignition engines. One of the primary pollutants from lean-burn engines, especially from diesels, are oxides of nitrogen (NOx). Current three-way catalytic converters will not have adequate performance to meet future emission reduction requirements. Therefore, there is a need for researchers and engineers to develop efficient exhaust aftertreatment devices that will reduce NOx emissions from lean-burn engines. These devices must have very high conversion of NOx gases, be unaffected by exhaust-gas impurity such as sulfur, and have minimal impact on vehicle operations and fuel economy. An effective technology for NOx control that is currently receiving a lot of attention is a non-thermal plasma system.
Technical Paper

Application of Non-Thermal Plasma Assisted Catalyst Technology for Diesel Engine Emission Reduction

2000-08-21
2000-01-3088
With new legislation and federal regulation for vehicle emission levels, automotive and truck manufacturers have been prompted to focus on emission control technologies that limit the level of exhaust pollutants. One of the primary pollutants, especially from diesel engines, is oxides of nitrogen (NOx). One possible solution to this pollution challenge is to design a more efficient internal combustion engine, which would require better engine operating parameter controls. However, there are limitations associated with such tight engine management. This need has led researchers and engineers to focus on the development of exhaust aftertreatment devices that will reduce NOx emissions with current diesel engines. An optimum aftertreatment device must be unaffected by exhaust-gas impurity poisoning such as sulfur products, and must have minimal impact on vehicle operations and fuel economy.
Technical Paper

Evaluation of Propulsion Drive System Technologies for Hybrid Vehicles

2000-04-02
2000-01-1532
This paper summarizes the results of an investigation of high risk, high potential technologies for hybrid vehicle drive applications and investigate potential solutions for the technical risk items associated with these technologies. The study consisted of the design, build, and test of different types of electric machines to understand their performance, efficiency, and manufacturability to develop hybrid vehicles with cost and performance similar to the present day IC engine based vehicles, but with lower emissions and better fuel economy. Machine technologies examined include synchronous reluctance, permanent magnet, and switched reluctance. Test data for various machine technologies is presented along with a discussion of the technical risk associated with each technology.
Technical Paper

Design and Development of a Mechanical Variable Valve Actuation System

2000-03-06
2000-01-1221
Compromises inherent with fixed valve lift and event timing have prompted engine designers to consider Variable Valve Actuation (VVA) systems for many decades. In recent years, some relatively basic forms of VVA have been introduced into production engines. Greater performance and driveability expectations of customers, more stringent emission regulations set by government legislators, and the mutual desire for higher fuel economy are increasingly at odds. As a solution, many OEM companies are seriously considering large-scale application of higher function VVA mechanisms in their next generation vehicles. This paper describes the continuing development progress of a mechanical VVA system. Design features and operation of the mechanism are explained. Test results are presented in two sections: motored cylinder head test data focuses on VVA system friction, control system performance, valve lift and component stress.
Technical Paper

Evaluation of a Non-Thermal Plasma System for Remediation of NOx in Diesel Exhaust

1999-10-25
1999-01-3639
With ever more stringent CO2 emissions mandates, many automobile manufacturers are seeking the fuel economy benefits of diesel and lean-burn gasoline engines. At the same time the emissions standards that diesel and gasoline engines will have to meet in the next decade continue to reduce. Proposed solutions for meeting the stringent emissions standards all appear to have limitations, such as propensities to poisoning from sulfur, narrow operating temperature windows, and requirements for controls that give rapid rich excursions. Non-thermal plasma-catalyst systems have shown good performance in bench testing while being largely unaffected by these same issues. A two-stage system with a unique non-thermal plasma reactor combined with a zeolite-based catalyst has been constructed and shown to work over a wide temperature range.
X