Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Maximum Pulling Force Calculation of Permanent Magnet Tractor Motors in Electric Vehicle Applications

2024-04-09
2024-01-2217
In electric vehicle applications, the majority of the traction motors can be categorized as Permanent Magnet (PM) motors due to their outstanding performance. As indicated in the name, there are strong permanent magnets used inside the rotor of the motor, which interacts with the stator and causes strong magnetic pulling force during the assembly process. How to estimate this magnetic pulling force can be critical for manufacturing safety and efficiency. In this paper, a full 3D magnetostatic model has been proposed to calculate the baseline force using a dummy non-slotted cylinder stator and a simplified rotor for less meshing elements. Then, the full 360 deg model is simplified to a half-pole model based on motor symmetry to save the simulation time from 2 days to 2 hours. A rotor position sweep was conducted to find the maximum pulling force position. The result shows that the max pulling force happens when the rotor is 1% overlapping with the stator core.
Technical Paper

Advanced Material Characterization of Hood Insulator Foams for Pedestrian Head Impact

2024-04-09
2024-01-2682
Hood insulators are widely used in automotive industry to improve noise insulation, pedestrian impact protection and to provide aesthetic appeal. They are attached below the hood panel and are often complex in shape and size. Pedestrian head impacts are highly dynamic events with a compressive strain rate experienced by the insulator exceeding 300/s. The energy generated by the impact is partly absorbed by the hood insulators thus reducing the head injury to the pedestrian. During this process, the insulator experiences multi-axial stress states. The insulators are usually made of soft multi-layered materials, such as polyurethane or fiberglass, and have a thin scrim layer on either side. These materials are foamed to their nominal thickness and are compression molded to take the required shape of the hood. During this process they undergo thickness reduction, thereby increasing their density.
Technical Paper

Thermomechanical Fatigue Behavior of a Cast Austenitic Stainless Steel

2024-04-09
2024-01-2683
Cast austenitic stainless steels, such as 1.4837Nb, are widely used for turbo housing and exhaust manifolds which are subjected to elevated temperatures. Due to assembly constraints, geometry limitation, and particularly high temperatures, thermomechanical fatigue (TMF) issue is commonly seen in the service of those components. Therefore, it is critical to understand the TMF behavior of the cast steels. In the present study, a series of fatigue tests including isothermal low cycle fatigue tests at elevated temperatures up to 1100°C, in-phase and out-of-phase TMF tests in the temperature ranges 100-800°C and 100-1000°C have been conducted. Both creep and oxidation are active in these conditions, and their contributions to the damage of the steel are discussed.
Technical Paper

Durability of Elastomeric Bushings Computed from Track-Recorded Multi-Channel Road Load Input

2024-04-09
2024-01-2253
The qualification requirements of automakers derive from track testing in which road load and moment inputs to a part in x, y and z directions are recorded over a set of driving conditions selected to represent typical operation. Because recorded histories are lengthy, often comprising many millions of time steps, past industry practice has been to specify simplified block cycle schedules for purposes of durability testing or analysis. Simplification, however, depends on imprecise human judgement, and risks fidelity of the inferred life and failure mode relative to actual. Fortunately, virtual methods for fatigue life prediction are available that are capable of processing full, real-time, multiaxial road load histories. Two examples of filled natural rubber ride bushings are considered here to demonstrate. Each bushing is subject to a schedule of 11 distinct recorded track events.
Technical Paper

Lubrication Effects on Automotive Steel Friction between Bending under Tension and Draw Bead Test

2023-04-11
2023-01-0729
Zinc-based electrogalvanized (EG) and hot-dip galvanized (HDGI) coatings have been widely used in automotive body-in-white components for corrosion protection. The formability of zinc coated sheet steels depends on the properties of the sheet and the interactions at the interface between the sheet and the tooling. The frictional behavior of zinc coated sheet steels is influenced by the interfacial conditions present during the forming operation. Friction behavior has also been found to deviate from test method to test method. In this study, various lubrication conditions were applied to both bending under tension (BUT) test and a draw bead simulator (DBS) test for friction evaluations. Two different zinc coated steels; electrogalvanized (EG) and hot-dip galvanized (HDGI) were included in the study. In addition to the coated steels, a non-coated cold roll steel was also included for comparison purpose.
Technical Paper

Conducting Comparisons of Multi-Body Dynamics Solvers with a Goal of Establishing Future Direction

2023-04-11
2023-01-0166
As passenger vehicle design evolves and accelerates, the use of multi-body dynamics solvers has proven to be invaluable in the engineering workflow. MBD solvers allow engineers to build virtual vehicle models that can accurately simulate vehicle responses and calculate internal forces, which previously could only be assessed using physical prototype builds with hundreds of measurement transducers. Evaluation and selection of solvers within an engineering environment is inherently a multi-dimensional activity that can include ease of use, retention of previously developed expertise, accuracy, speed, and integration with existing analysis processes. We discuss here some of the challenges present in developing capability and accumulating data to support each of these criteria. Developing a pilot model that is capable of being applied to a comprehensive set of use cases, and then verifying those use cases, required significant project management activity.
Technical Paper

Characterization and Modeling of Instrument Panel Textile Trim Materials for Passenger Airbag Deployment Analysis

2023-04-11
2023-01-0930
Premium instrument panels (IPs) contain passenger airbag (PAB) systems that are typically comprised of a stiff plastic substrate and a soft ‘skin’ material which are adhesively bonded. During airbag deployment, the skin tears along the scored edges of the door holding the PAB system, the door opens, and the airbag inflates to protect the occupant. To accurately simulate the PAB deployment dynamics during a crash event all components of the instrument panel and the PAB system, including the skin, must be included in the model. It has been recognized that the material characterization and modeling of the skin tearing behavior are critical for predicting the timing and inflation kinematics of the airbag. Even so, limited data exists in the literature for skin material properties at hot and cold temperatures and at the strain rates created during the airbag deployment.
Technical Paper

Application of a Mechanism-Based Short Crack Growth Model for the Fatigue Analysis of an Engine Cylinder Block Including Low-Frequency Thermal and High-Frequency Dynamic Loading

2023-04-11
2023-01-0595
Cast aluminum cylinder blocks are frequently used in gasoline and diesel internal combustion engines because of their light-weight advantage. However, the disadvantage of aluminum alloys is their relatively low strength and fatigue resistance which make aluminum blocks prone to fatigue cracking. Engine blocks must withstand a combination of low-cycle fatigue (LCF) thermal loads and high-cycle fatigue (HCF) combustion and dynamic loads. Reliable computational methods are needed that allow for accurate fatigue assessment of cylinder blocks under this combined loading. In several publications, the mechanism-based thermomechanical fatigue (TMF) damage model DTMF describing the growth of short fatigue cracks has been extended to include the effect of both LCF thermal loads and superimposed HCF loadings. This approach is applied to the finite life fatigue assessment of an aluminum cylinder block. The required material properties related to LCF are determined from uniaxial LCF tests.
Technical Paper

Thermomechanical Fatigue Life Predictions of Cast Aluminum Cylinder Heads Considering Defect Distribution

2023-04-11
2023-01-0594
Semi-Permanent Mold (SPM) cast aluminum alloy cylinder heads are commonly used in gasoline and diesel internal combustion engines. The cast aluminum cylinder heads must withstand severe cyclic mechanical and thermal loads throughout their lifetime. The casting process is inherently prone to introducing casting defects and microstructural heterogeneity. Porosity, which is one of the most dominant volumetric defects in such castings, has a significant detrimental effect on the fatigue life of these components since it acts as a crack initiation site. A reliable analytical model for Thermo-Mechanical Fatigue (TMF) life prediction must take into account the presence of these defects. In previous publications, it has been shown that the mechanism-based TMF damage model (DTMF) is able to predict with good accuracy crack locations and the number of cycles to propagate an initial defect into a critical crack size in aluminum cylinder heads considering ageing effects.
Technical Paper

Thermomechanical Fatigue Crack Growth Simulation in a Turbo-Housing Model Using Nonlinear Fracture Mechanics

2023-04-11
2023-01-0596
Turbocharger housings in internal combustion engines are subjected to severe mechanical and thermal cyclic loads throughout their life-time or during engine testing. The combination of thermal transients and mechanical load cycling results in a complex evolution of damage, leading to thermo-mechanical fatigue (TMF) of the material. For the computational TMF life assessment of high temperature components, the DTMF model can provide reliable TMF life predictions. The model is based on a short fatigue crack growth law and uses local finite-element (FE) results to predict the number of cycles to failure for a technical crack. In engine applications, it is nowadays often acceptable to have short cracks as long as they do not propagate and cause loss of function of the component. Thus, it is necessary to predict not only potential crack locations and the corresponding number of cycles for a technical crack, but also to determine subsequent crack growth or even a possible crack arrest.
Technical Paper

A Combined Data Science and Simulation-Based Methodology for Efficient and Economic Prediction of Thermoplastic Performance for Automotive Industry

2023-04-11
2023-01-0936
There are significant predictive tool usages by design engineers in automotive industry to capture material composition and manufacturing process-induced variables. In specific, an accurate modeling of material behavior to predict the mechanical performance of a thermoplastic part is an evolving subject in this field as one needs to consider multiple factors and steps to achieve the right prediction accuracies. The variability in prediction comes from different factors such as polymer type (filled vs. unfilled, amorphous vs semi crystalline etc.), design and manufacturing features (weldline, gate locations, thickness, notches etc.), operating conditions (temperature, moisture etc.) and finally load states (tension, compression, flexural, impact etc.). Using traditional numerical simulation-based modelling to study and validate all these factors requires significant computational time and effort.
Technical Paper

Analytical Failure Modeling of Thermal Interface Material in High Voltage Battery Modules in Electric Vehicle Crash Scenario

2023-04-11
2023-01-0521
Battery Electric Vehicles (BEVs) are becoming more competitive day by day to achieve maximum peak power and energy requirement. This poses challenges to the design of Thermal Interface Material (TIM) which maintains the cell temperature and ensure retention of cell and prevent electrolyte leak under different crash loads. TIM can be in the form of adhesives, gels, gap fillers. In this paper, TIM is considered as structural, and requires design balance with respect to thermal and mechanical requirements. Improving structural strength of TIM will have negative impact on its thermal conductivity; hence due care needs to be taken to determine optimal strength that meets both structural and thermal performance. During various crash conditions, due to large inertial force of cell and module assembly, TIM is undertaking significant loads on tensile and shear directions. LS-DYNA® is used as simulation solver for performing crash loading conditions and evaluate structural integrity of TIM.
Technical Paper

Study of Newly Improved Material Solution for Inverter Application

2023-04-11
2023-01-0097
Previous material solution for industrial inverter applications was PC/ABS for more than 10 years. Recently, PC/ABS has been reduced in the market due to customer needs for improved performance of existing materials and market trends for improved material like raising carbon credits are emphasizing the need for eco-friendly environmental technologies and rapidly growing smart factories to deliver, smart power consumption technologies for environmental protection and energy saving. This trend is rapidly changing in common life and various industries, so new material solutions are required to improve effective material solutions such as less or no outgassing, thermal stability and lower process temperature availability, color stability, better flame retardant properties and so on. In this study, according to new industry requirements, material evaluation was conducted with SABIC NORYLTM N-series PPE resins and incumbent PC/ABS material.
Technical Paper

Accurate Material Modeling and Analysis of Fiber-Filled Thermoplastics to Enable Light Weighting in Automotive Applications

2022-10-05
2022-28-0346
Usage of fiber-filled thermoplastics in automotive structural applications are increasing due to their inherent advantages over metal, which include lighter weight and simplification in assembly. However, accurately predicting the performance of a fiber-filled thermoplastic part can be challenging due to presence of non-linearity and anisotropy in the material behavior. This paper describes material characterization and modeling of fiber-filled thermoplastics for accurate prediction of part performance to enable rapid use of these lighter materials in automotive applications. The grade used for the study is a 30% glass filled PEI, SABIC’s ULTEMTM 2300 Resin. Accuracy of the fiber orientation prediction is clearly demonstrated by the plaque level flow simulation validation with the CT-Scan data, followed by structural validations with specimen and part level tests.
Journal Article

Estimating Brake Pad Life in Regenerative Braking Intensive Vehicle Applications

2022-09-19
2022-01-1161
Regenerative braking without question greatly impacts brake pad service life in the field, in most cases extending it significantly. Estimating its impact precisely has not been an overriding concern - yet - due in part to the extensive sharing of brake components between regen-intensive battery-electric and hybrid vehicles, and their more friction-brake intensive internal combustion engine powered sibling. However, a multitude of factors are elevating the need for a more accurate estimation, including the emerging of dedicated electric vehicle architectures with opportunities for optimizing the friction brake design, a sharp focus on brake particulate emissions and the role of regenerative braking, a need to make design decisions for features such as corrosion protection for brake pad and pad slide components, and the emergence of driver-facing features such as Brake Pad Life Monitoring.
Technical Paper

Composite Dash Panel Insulation Characterization and Modelling Methodology for Virtual Simulations

2022-03-29
2022-01-0278
Felt-based dash panel insulation materials have traditionally been used as a sound barrier between the engine and passenger compartments in a vehicle to reduce the transmission of engine noise to the occupant space. Their structural performance has been mainly ignored due to the typically low stiffness and strength characteristics. Consequently, studies of the acoustic properties of these materials have been found in literature while no information was found on their mechanical behavior especially in dynamic loading conditions. More stringent requirements for occupant and pedestrian safety imposed by government regulations and the position of these materials in the impact zones of pedestrian head impact have brought attention to the material contribution to the energy absorption during the impact and the need to assess the mechanical properties of these materials.
Journal Article

Low-Cost Magnesium Alloy Sheet Component Development and Demonstration Project

2022-03-29
2022-01-0248
Most of the applications of magnesium in lightweighting commercial cars and trucks are die castings rather than sheet metal, and automotive applications of magnesium sheet have typically been experimental or low-volume serial production. The overarching objective of this collaborative research project organized by the United States Automotive Materials Partnership (USAMP) was to develop new low-cost magnesium alloys, and demonstrate warm-stamping of magnesium sheet inner and outer door panels for a 2013 MY Ford Fusion at a fully accounted integrated component cost increase over conventional steel stamped components of no more than $2.50/lb. saved ($5.50/kg saved). The project demonstrated the computational design of new magnesium (Mg) alloys from atomistic levels, cast new experimental alloy ingots and explored thermomechanical rolling processes to produce thin Mg sheet of desired textures.
Journal Article

Lining Wear Measurements using a Coordinate Measurement Machine

2021-10-11
2021-01-1270
Accurate measurements of brake friction materials are critical to understanding brake behaviors during testing. Current methods typically utilize a hand gauge (or a machine, in some cases) to sample various discrete points on the brake lining. This approach limits measurements to planar wear characteristics, taper and thickness, and excludes more complex measurements such as cupping. The limited number of points means that a single errant point measurement or the choice of point locations can have a large impact on the reported wear measurement. This paper will describe a method for utilizing a Coordinate Measurement Machine (CMM) fitted with a laser line scanning tool to generate a point cloud of data that can then be compared to an earlier measurement of the same piece or to a math model. This method produces thousands of data points which allows for more accurate volumetric wear calculations and color maps of the entire friction face.
Journal Article

The Influence of Wheel Rotations to the Lateral Runout of a Hybrid Material or Dimensionally Reduced Wheel Bearing Flange

2021-10-11
2021-01-1298
The automotive industry is continuously striving to reduce vehicle mass by reducing the mass of components including wheel bearings. A typical wheel bearing assembly is mostly steel, including both the wheel and knuckle mounting flanges. Mass optimization of the wheel hub has traditionally been accomplished by reducing the cross-sectional thickness of these components. Recently bearing suppliers have also investigated the use of alternative materials. While bearing component performance is verified through analysis and testing by the supplier, additional effects from system integration and performance over time also need to be comprehended. In a recent new vehicle architecture, the wheel bearing hub flange was reduced to optimize it for low mass. In addition, holes were added for further mass reduction. The design met all the supplier and OEM component level specifications.
Technical Paper

Data Driven Model to Predict Cylinder Head Fatigue Failure

2021-04-06
2021-01-0801
Fatigue failure is one of the major failure modes for internal combustion engines, especially with reduction in engine size and increase in combustion pressure and operating temperature. Dynamometer tests are devised to ensure engine durability for high and low cycle fatigue. With the advent of CAE technology, the dynamometer test behavior can be simulated using CAE analysis and engine durability can be assessed. The data generated in CAE analyses can be used to predict failure of the engines or future engine design modifications. The present paper has two parts - first is running finite element analysis (FEA) to get stress, strain data and running high cycle fatigue analysis to get safety factors and second is creating a predictive tool to assess failures using data from the first part as inputs. Using advancements in the field of machine learning, the paper presents use of support vector machine (SVM) algorithm to predict failure of the engine based on inputs.
X