Refine Your Search

Topic

Author

Search Results

Journal Article

Mars Science Laboratory Mechanically Pumped Fluid Loop for Thermal Control - Design, Implementation, and Testing

2009-07-12
2009-01-2437
The Mars Science Laboratory (MSL) mission to land a large rover on Mars is being prepared for Launch in 2011. A Multi-Mission Radioisotope Thermoelectric Generator (MMRTG) on the rover provides an electrical power of 110 W for use in the rover and the science payload. Unlike the solar arrays, MMRTG provides a constant electrical power during both day and night for all seasons (year around) and latitudes. The MMRTG dissipates about 2000 W of waste heat to produce the desired electrical power. One of the challenges for MSL Rover is the thermal management of the large amount of MMRTG waste heat. During operations on the surface of Mars this heat can be harnessed to maintain the rover and the science payload within their allowable limits during nights and winters without the use of electrical survival heaters. A mechanically pumped fluid loop heat rejection and recovery system (HRS) is used to pick up some of this waste heat and supply it to the rover and payload.
Journal Article

Design Description and Initial Characterization Testing of an Active Heat Rejection Radiator with Digital Turn-Down Capability

2009-07-12
2009-01-2419
NASA's proposed lunar lander, Altair, will be exposed to vastly different external temperatures following launch till its final destination on the moon. In addition, the heat rejection is lowest at the lowest environmental temperatures (0.5 kW @ 4K) and highest at the highest environmental temperature (4.5 kW @ 215K). This places a severe demand on the radiator design to handle these extreme turn-down requirements. A radiator with digital turn-down capability is currently under study at JPL as a robust means to meet the heat rejection demands and provide freeze protection while minimizing mass and power consumption. Turndown is achieved by independent control of flow branches with isolating latch valves and a gear pump to evacuate the isolated branches. A bench-top test was conducted to characterize the digital radiator concept. Testing focused on the demonstration of proper valve sequencing to achieve turn-down and recharge of flow legs.
Technical Paper

Monitoring Pre-Combustion Event Markers by Heating Electrical Wires

2009-07-12
2009-01-2543
Simultaneous measurements were made for particle releases and off-gassing products produced by heating electrical wires. The wire samples in these experiments were heated to selected temperatures in a heating chamber and responses to vapor releases were recorded by the JPL Electronic Nose (ENose) and an Industrial Scientific ITX gas-monitor; particles released were detected by a TSI P-Trak particle counter. The temperature range considered for the experiment is room temperature (24−26°C) to 500 °C. The results were analyzed by overlapping responses from the ENose, ITX gas sensors and P-Trak, to understand the events (particle release/off-gassing) and sequence of events as a function of temperature and to determine qualitatively whether ENose may be used to detect pre-combustion event markers.
Journal Article

On-Orbit Performance of the Moon Mineralogy Mapper Instrument

2009-07-12
2009-01-2390
Launched on India's Chandrayaan-1 spacecraft on October 22, 2008, JPL's Moon Mineralogy Mapper (M3) instrument has successfully completed over six months of operation in space. M3 is one in a suite of eleven instruments, six of which are foreign payloads, flying onboard the Indian spacecraft. Chandrayaan-1, managed by the Indian Space Research Organization (ISRO) in Bangalore, is India's first deep space mission. Chandrayaan-1 was launched on the upgraded version of India's Polar Satellite Launch Vehicle (PSLV-XL) from the Satish Dhawan Space Centre, SHAR, Sriharikota, India. The primary science objective of the M3 instrument is the characterization and mapping of the lunar surface composition in the context of its geologic evolution. Its primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions.
Journal Article

Off-Gassing and Particle Release by Heated Polymeric Materials

2008-06-29
2008-01-2090
Polymers are one of the major constituents in electrical components. A study investigating pre-combustion off-gassing and particle release by polymeric materials over a range of temperatures can provide an understanding of thermal degradation prior to failure which may result in a fire hazard. In this work, we report simultaneous measurements of pre-combustion vapor and particle release by heated polymeric materials. The polymer materials considered for the current study are silicone and Kapton. The polymer samples were heated over the range 20 to 400°C. Response to vapor releases were recorded using the JPL Electronic Nose (ENose) and Industrial Scientific's ITX gas monitor configured to detect hydrogen chloride (HCl), carbon monoxide (CO) and hydrogen cyanide (HCN). Particle release was monitored using a TSI P-TRAK particle counter.
Technical Paper

On-Orbit Performance of the TES Loop Heat Pipe Heat Rejection System

2008-06-29
2008-01-2000
Launched on NASA's Aura spacecraft on July 15, 2004, JPL's Tropospheric Emission Spectrometer (TES) has been operating successfully for over three years in space. TES is an infrared high resolution, imaging fourier transform spectrometer with spectral coverage of 3.3 to 15.4 μm to measure and profile essentially all infrared-active molecules present in the Earth's lower atmosphere. It measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. The Aura spacecraft was successfully placed in a sun-synchronous near-circular polar orbit with a mean altitude of 705 km and 98.9 minute orbit period. The observatory is designed for a nominal 5 year mission lifetime. The instrument thermal design features include four temperature zones needed for efficient cryogenic staging to provide cooling at 65 K, 180 K, 230 K and 300 K.
Technical Paper

Thermal Vacuum Testing of the Moon Mineralogy Mapper Instrument

2008-06-29
2008-01-2037
The Moon Mineralogy Mapper (M3) instrument is scheduled for launch in 2008 onboard the Indian Chandrayaan-1 spacecraft. The mission is managed by the Indian Space Research Organization (ISRO) in Bangalore, India and is India's first flight to the Moon. M3 is being developed for NASA by the Jet Propulsion Laboratory under the Discovery Program Office managed by Marshall Space Flight Center. M3 is a state-of-the-art instrument designed to fulfill science and exploratory objectives. Its primary science objective is to characterize and map the lunar surface composition to better understand its geologic evolution. M3's primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions. M3 is a cryogenic near infrared imaging spectrometer with spectral coverage of 0.4 to 3.0 μm at 10 nm resolution with high signal to noise ratio, spatial and spectral uniformity.
Technical Paper

Thermal Vacuum Testing of the Orbiting Carbon Observatory Instrument

2008-06-29
2008-01-2036
The Orbiting Carbon Observatory (OCO) instrument is scheduled for launch onboard an Orbital Sciences Corporation LEOStar-2 architecture spacecraft in December 2008. The instrument will collect data to identify CO2 sources and sinks and quantify their seasonal variability. OCO observations will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. OCO has three bore-sighted, high resolution, grating spectrometers which share a common telescope with similar optics and electronics. A 0.765 μm channel will be used for O2 observations, while the weak and strong CO2 bands will be observed with 1.61 μm and 2.06 μm channels, respectively. The OCO spacecraft circular polar orbit will be sun-synchronous with an inclination of 98.2 degrees, mean altitude of 705 km and 98.9 minute orbit period.
Journal Article

On-Orbit Thermal Performance of the TES Instrument-Three Years in Space

2008-06-29
2008-01-2118
The Tropospheric Emission Spectrometer (TES), launched on NASA's Earth Observing System Aura spacecraft on July 15, 2004 has successfully completed over three years in space and has captured a number of important lessons. The instrument primary science objective is the investigation and quantification of global climate change. TES measures the three-dimensional distribution of ozone and its precursors in the lower atmosphere on a global scale. It is an infrared (IR) high resolution, imaging Fourier Transform Spectrometer (FTS) with a 3.3 to 15.4 μm spectral coverage required for space-based measurements to profile essentially all infrared-active molecules present in the Earth's lower atmosphere. The nominal on-orbit mission lifetime is 5 years. The Aura spacecraft flies in a sun-synchronous near-circular polar orbit with 1:38 pm ascending node.
Journal Article

Development of the Orbiting Carbon Observatory Instrument Thermal Control System

2008-06-29
2008-01-2065
The Orbiting Carbon Observatory (OCO) will carry a single science instrument scheduled for launch on an Orbital Sciences Corporation LeoStar-2 architecture spacecraft bus in December 2008. The science objective of the OCO instrument is to collect spaced-based measurements of atmospheric CO2 with the precision, resolution, and coverage needed to identify CO2 sources and sinks and quantify their seasonal variability. The instrument will permit the collection of spatially resolved, high resolution spectroscopic observations of CO2 and O2 absorption in reflected sunlight over both continents and oceans. These measurements will improve our ability to forecast CO2 induced climate change. The instrument consists of three bore-sighted, high resolution grating spectrometers sharing a common telescope with similar optics and electronics.
Journal Article

ATCC 29669 Spores Show Substantial Dry Heat Survivability

2008-06-29
2008-01-1982
Bacillus sp. ATCC 29669 was isolated from microbial fallout in clean rooms during the assembly of the Viking Spacecraft missions to Mars, making it a potential contamination concern for outbound space missions. Spores from this bacterial strain were found to be thirty times more resistant to dry heat than B. atrophaeus. Spore inactivation rates under vacuum controlled humidity were faster than rates obtained under ambient humidity. Inactivation rates for these heat resistant spores are important considerations for planetary protection implementation where temperature, time and humidity conditions are used to estimate the effectiveness of dry heat microbial reduction (DHMR) procedures.
Journal Article

Thermal Control System of the Moon Mineralogy Mapper Instrument

2008-06-29
2008-01-2119
The Moon Mineralogy Mapper (M3) instrument is one in a suite of twelve instruments which will fly onboard the Indian Chandrayaan-1 spacecraft scheduled for launch in 2008. Chandrayaan-1 is India's first mission to the Moon and is being managed by the Indian Space Research Organization (ISRO) in Bangalore, India. Chandrayaan-1 overall scientific objective is the photo-selenological and the chemical mapping of the Moon. The primary science objective of the M3 instrument is the characterization and mapping of the lunar surface composition in the context of its geologic evolution. Its primary exploration goal is to assess and map the Moon mineral resources at high spatial resolution to support future targeted missions. It is a “push-broom” near infrared (IR) imaging spectrometer with spectral coverage of 0.4 to 3.0 μm at 10 nm resolution with high signal to noise ratio, spatial and spectral uniformity.
Technical Paper

Two Phase vs. Single Phase Thermal Loop Trades for Exploration Mission LAT II Architecture

2008-06-29
2008-01-1958
NASA's Exploration Mission program is planning for a return to the Moon in 2020. The Exploration Systems Mission Directorate (ESMD)'s Lunar Architecture Team (LAT) is currently refining their lunar habitat architectures. The Advanced Thermal Control Project at the Johnson Space Center, as part of the Exploration Technology Development Program (ETDP) is developing technologies in support of the future lunar missions. In support of this project, a trade study was conducted at the Jet Propulsion Laboratory on the mechanically pumped two-phase and single-phase thermal loops for lunar habitats located at the South Pole for the LAT II architecture. This paper discusses the various trades and the results for a representative architecture which shares a common external loop for the single and two-phase system cases.
Technical Paper

Results from the Vehicle Cabin Atmosphere Monitor: A Miniature Gas Chromatograph/Mass Spectrometer for Trace Contamination Monitoring on the ISS and Orion

2008-01-29
2008-01-2045
Progress on the delivery of the Vehicle Cabin Atmosphere Monitor (VCAM) is reported. VCAM is an autonomous trace-species detector to be used aboard the International Space Station (ISS) for atmospheric analysis. The instrument is based on a low-mass, low-power miniature preconcentrator, gas chromatograph, and Paul ion trap mass spectrometer (PCGC/MS) capable of measuring volatile constituents in a space vehicle or planetary outpost at sub-ppm levels. VCAM detects and quantifies 40 target compounds at their 180-day Spacecraft Maximum Allowable Concentration (SMAC) levels. It is designed to operate autonomously, maintenance-free, with a self-contained carrier and calibration gas supplies sufficient for a one-year lifetime. Two flight units will be delivered for operation in the ISS EXPRESS rack.
Technical Paper

Overview of the Vehicle Cabin Atmosphere Monitor, a Miniature Gas Chromatograph/Mass Spectrometer for Trace Contamination Monitoring on the ISS and CEV

2007-07-09
2007-01-3150
Work is underway to deliver an instrument for analysis of the atmosphere aboard the International Space Station. The Vehicle Cabin Atmosphere Monitor (VCAM) is based on a low-mass, low-power miniature preconcentrator gas chromatograph/mass spectrometer (PCGC/MS) capable of providing sub-ppm measurements of volatile constituents in a space vehicle or outpost. VCAM is designed to operate autonomously, maintenance-free, once per day, with its own carrier and calibration gas supplies sufficient for a one-year lifetime. VCAM performance is sufficient to detect and identify 90% of the target compounds specified at their 180-day Spacecraft Maximum Allowable Concentration (SMAC) levels. The flight units will be delivered in mid-2008 and be operated in the ISS EXPRESS rack.
Technical Paper

Viral Populations within the International Space Station's Internal Active Thermal Control System Ground Support and Potential Flight Hardware

2007-07-09
2007-01-3108
The Internal Active Thermal Control System (IATCS) aboard the International Space Station (ISS) contains an aqueous, alkaline fluid (pH 9.5±0.5) that aids in maintaining a habitable environment for the crew. Because microbes have significant potential to cause disease, adverse effects on astronaut health, and microbe-induced corrosion, the presence of both bacteria and viruses within IATCS fluids is of concern. This study sought to detect and identify viral populations in IATCS samples obtained from the Kennedy Space Center as a first step towards characterizing and understanding potential risks associated with them. Samples were concentrated and viral nucleic acids (NA) extracted providing solutions containing 8.87-22.67 μg NA per mL of heat transfer fluid. After further amplification viral DNA and cDNA were then pooled, fluorescently labeled, and hybridized onto a Combimatrix panvira 12K microarray containing probes for ∼1,000 known human viruses.
Technical Paper

Mechanically Pumped Fluid Loop Technologies for Thermal Control of Future Mars Rovers

2006-07-17
2006-01-2035
Future planetary science missions planned for Mars are expected to be more complex and thermally challenging than any of the previous missions. For future rovers, the operational parameters such as landing site latitudes, mission life, distance traversed, and rover thermal energy to be managed will be significantly higher (two to five times) than the previous missions. It is a very challenging problem to provide an effective thermal control for the future rovers using traditional passive thermal control technologies. Recent investigations at the Jet Propulsion Laboratory (JPL) have shown that mechanical pump based fluid loops provide a robust and effective thermal control system needed for these future rovers. Mechanical pump based fluid loop (MPFL) technologies are currently being developed at JPL for use on such rovers. These fluid loops are planned for use during spacecraft cruise from earth to Mars and also on the Martian surface operations.
Technical Paper

Expanding the Capabilities of the JPL Electronic Nose for an International Space Station Technology Demonstration

2006-07-17
2006-01-2179
An array-based sensing system based on polymer-carbon composite conductometric sensors is under development at JPL for use as an environmental monitor in the International Space Station. Sulfur dioxide has been added to the analyte set for this phase of development. Using molecular modeling techniques, the interaction energy between SO2 and polymer functional groups has been calculated, and polymers selected as potential SO2 sensors. Experiment has validated the model and two selected polymers have been shown to be promising materials for SO2 detection.
Technical Paper

Self-Deployable Foam Antenna Structures for Earth Observation Radiometer Applications

2006-07-17
2006-01-2064
The overall goal of this program was the development of a 10 m. diameter, self-deployable antenna based on an open-celled rigid polyurethane foam system. Advantages of such a system relative to current inflatable or self-deploying systems include high volumetric efficiency of packing, high restoring force, low (or no) outgassing, low thermal conductivity, high dynamic damping, mechanical isotropy, infinite shelf life, and easy fabrication with methods amenable to construction of large structures (i.e., spraying). As part of a NASA Phase II SBIR, Adherent Technologies and its research partners, Temeku Technologies, and NASA JPL/Caltech, conducted activities in foam formulation, interdisciplinary analysis, and RF testing to assess the viability of using open cell polyurethane foams for self-deploying antenna applications.
X