Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Development of Mo-Free Ultra-High Strength 1.6-GPa Bolt with Delayed Fracture Resistance for Multi-Link Type Engine

2024-04-09
2024-01-2070
Mo-free 1.6-GPa bolt was developed for a Variable Compression Turbo (VC-Turbo) engine, which is environment friendly and improves fuel efficiency and output. Mo contributes to the improvement of delayed fracture resistance; therefore, the main objective is to achieve both high strength and delayed fracture resistance. Therefore, Si is added to the developed steel to achieve high strength and delayed fracture resistance. The delayed fracture tests were performed employing the Hc/He method. Hc is the limit of the diffusible hydrogen content without causing a delayed fracture under tightening, and He is the diffusible hydrogen content entering under a hydrogen-charging condition equivalent to the actual environment. The delayed fracture resistance is compared between the developed steel and the SCM440 utilized for 1.2-GPa class bolt as a representative of the current high-strength bolts.
Journal Article

Development of Resin Water Jacket Case for Traction Inverter Aiming to Downsizing and Light-Weighting

2022-03-29
2022-01-0719
The size and weight of the traction inverter needs to be reduced to ensure a sufficient cruising range of an electric vehicle. To this end, one approach involves changing materials of the inverter case from aluminum to resin. However, the resin in use of inverter case causes technical issues in terms of collision performance, electromagnetic compatibility (EMC), and cooling performance because of the difference in the material properties between the resin and the conventionally used aluminum. By solving the abovementioned issues, a resin water jacket case (hereinafter, resin water jacket) was successfully adopted with inverters designed for next-generation electric powertrain in mass production models for the first time. The resin-based structure had advantages to reduce the weight of the inverter case by ~35% and decrease the number of parts to ~3/5, compared to that for the conventional cases.
Journal Article

Stainless Steel Thermal Spray Coating of Cylinder Bores for VC-Turbo Engine

2021-04-06
2021-01-0343
Nissan’s variable compression turbo (VC-Turbo) engine has a multilink mechanism that continuously adjusts the top and bottom dead centers of the piston to change the compression ratio and achieve both fuel economy and high power performance. Increasing the exhaust gas recirculation (EGR) rate is an effective way to further reduce the fuel consumption, although this increases the exhaust gas condensation in the cylinder bores, causing a more corrosive environment. When the EGR rate is increased in a VC-Turbo engine, the combined effect of piston sliding and exhaust gas condensation at the top dead center accelerates the corrosive wear of the thermal spray coating. Stainless steel coating is used to improve the corrosion resistance, but the adhesion strength between the coating and the cylinder bores is reduced.
Technical Paper

Development of JASO GLV-1 0W-8 Low Viscosity Engine Oil for Improving Fuel Efficiency considering Oil Consumption and Engine Wear Performance

2020-04-14
2020-01-1423
Engine oil with viscosity lower than 0W-16 has been needed for improving fuel efficiency in the Japanese market. However, lower viscosity oil generally has negative aspects with regard to oil consumption and anti-wear performance. The technical challenges are to reduce viscosity while keeping anti-wear performance and volatility level the same as 0W-20 oil. They have been solved in developing a new engine oil by focusing on the molybdenum dithiocarbamate friction modifier and base oil properties. This paper describes the new oil that supports good fuel efficiency while reliably maintaining other necessary performance attributes.
Technical Paper

Design Methodology for Motor Thermal Management in Vehicle Electrification

2019-12-19
2019-01-2368
In order to improve the accuracy of the coil temperature prediction, detailed fundamental experiments have been conducted on thermal resistances that are caused by the void air gap and contact surfaces. The thermal resistance of the coil around the air gap can be calculated by an air gap distance and air heat conductivity. Contact surface thermal resistance between the core and the housing was constant regardless of the press-fitting state in this experiment. Prediction accuracy of the coil temperature is improved by including the heat resistance characteristics that is obtained by the basic experiment to conjugate heat transfer analysis model.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Journal Article

Development of Low Viscosity API SN 0W-16 Fuel-Saving Engine Oil Considering Chain Wear Performance

2017-03-28
2017-01-0881
A low viscosity API SN 0W-16 engine oil was developed to achieve a 0.5% improvement in fuel efficiency over the current GF-5/API SN 0W-20 oil. Oil consumption and engine wear are the main roadblocks to the development of low viscosity engine oils. However, optimization of the base oil and additives successfully prevent oil consumption and wear. First, it was confirmed in engine tests that NOACK volatility is still an effective indicator of oil consumption even for a low viscosity grade like 0W-16. As a result of base oil volatility control, the newly developed oil achieves the same level of oil consumption as the current GF-5/API SN 0W-20 oil. Second, it was found that the base oil viscosity and molybdenum dithiocarbamate (MoDTC) had a significant effect on chain wear in rig testing that simulated silent chain wear. For the same base oil viscosity, the new oil maintains the same oil film thickness under high surface pressure.
Journal Article

Friction Coefficient Variation Mechanism under Wet Condition in Disk Brake (Variation Mechanism Contributing Wet Wear Debris)

2016-09-18
2016-01-1943
This paper deals with friction under wet condition in the disk brake system of automobiles. In our previous study, the variation of friction coefficient μ was observed under wet condition. And it was experimentally found that μ becomes high when wear debris contains little moisture. Based on the result, in this paper, we propose a hypothesis that agglomerates composed of the wet wear debris induce the μ variation as the agglomerates are jammed in the gaps between the friction surfaces of a brake pad and a disk rotor. For supporting the hypothesis, firstly, we measure the friction property of the wet wear debris, and confirm that the capillary force under the pendular state is a factor contributing to the μ variation. After that, we simulate the wear debris behavior with or without the capillary force using the particle-based simulation. We prepare the simulation model for the friction surfaces which contribute to the friction force through the wear debris.
Technical Paper

Anti- Combustion Deposit Fuel Development for 2009 Toyota Formula One Racing Engine

2011-08-30
2011-01-1983
Toyota participated in Formula One1 (F1) Racing from 2002 to 2009. As a result of the downturn in the world economy, various engine developments within F1 were restricted in order to reduce the cost of competing in F1. The limit on the maximum number of engines allowed has decreased year by year. Toyota focused on the engine performance deterioration due to the combustion chamber deposits. In 2009, Toyota was successful in reducing around 40% of the deterioration by making combustion chamber cleaner in cooperation with ExxonMobil. This contributed to good result of 2009 F1 season for Toyota, including two second place finishes.
Technical Paper

Research into All Solid Secondary Lithium Battery

2011-05-17
2011-39-7234
It may be possible to simplify the structure and control systems of a lithium-ion battery by replacing the conventional liquid electrolyte with a solid electrolyte, resulting in higher energy density. However, power performance is a development issue of batteries using a solid electrolyte. To increase battery power performance, in addition to lithium ionic conductivity within the bulk of the electrolyte, it is also necessary to boost the lithium ionic conductivity at the interface between the electrode active material and the electrolyte, and to boost electron and lithium ionic conductivity within the cathode and anode active material. This research studied the mechanism of resistance reduction by electrode surface modification. Subsequently, this research attempted to improve electron conductivity by simultaneously introducing oxygen vacancies and carrying out nitrogen substitution in the crystalline structure of the Li4Ti5O12 anode active material.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Technical Paper

Fatigue Life Prediction on Rough Road Using Full Vehicle Co-simulation Model with Suspension Control

2010-04-12
2010-01-0952
A full vehicle multi-body dynamic (MBD) model with suspension control system is developed for fatigue life prediction under rough road condition. The model consists of tires, a trimmed body, heavy attached parts, powertrain, suspension, joints, and a driver model, and includes a suspension control system that varies characteristics of the suspension according to the rough road inputs. For tires, a commercial MBD tire model is employed with identifiable parameters. The models are simulated to run on the optically measured road surface of the proving ground. Apart from the trimmed body, several important heavy attached parts are modeled separately, that represent dynamic behavior that induces complex body input load. These parts, along with suspension and powertrain systems are connected to the body using nonlinear elements such as joints, springs, and dampers. Contact conditions are used to represent mount bushing, hood lock, stopper rubber, etc.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Journal Article

Analysis of Oxidative Deterioration of Biodiesel Fuel

2008-10-06
2008-01-2502
Methyl esters of saturated/unsaturated higher aliphatic acids (FAMEs) and a FAME of waste cooking oil (WCOME) were heated at 120°C in an air gas flow. The samples were analyzed before and after heating, using six different methods including electrospray ionization mass spectrometry. As a result, the samples after heating were found to contain low molecular weight aliphatic compounds and oligomers of the FAME. Based on the chemical structure of these oxidation products, reaction schemes were proposed for the deterioration of FAMEs. In addition, two unsaturated FAMEs containing 2,6-di-t-butyl-p-cresol (BHT) were similarly heated and analyzed to examine the effect of BHT on the oxidation of these FAME.
Technical Paper

Wear Analysis of DLC Coating in Oil Containing Mo-DTC

2007-07-23
2007-01-1969
Diamond-like carbon (DLC) coating has excellent properties like high hardness and low friction. So it has attracted considerable attention in recent years as a low-friction coating material. However, some DLC coatings display increased wear in oil containing Mo-DTC (Molybdenum-dithiocarbamates). Wear analyses of sliding surface after block-on-ring tests were conducted suggest that the decomposition product from Mo-DTC, MoO3, reacts with active sites in the DLC to promote the wear of DLC.
Technical Paper

Analysis of Tooth Surface Fatigue Strength of Automotive Transmission Gears

2007-04-16
2007-01-0117
The life of automotive transmission gears today is often governed by pitting fatigue life. Being able to predict pitting fatigue life accurately is a crucial issue. Pitting fatigue life is substantially influenced by surface hardness and tooth surface geometry. For that reason, this study examined a new method of predicting pitting fatigue life that takes into account changes in these factors over time. This method makes it possible to predict the pitting fatigue life of automotive transmission gears under a wide range of evaluation conditions with markedly better accuracy than conventional methods used previously.
Technical Paper

Evaluations of Physical Fatigue during Long-term Driving with a New Driving Posture

2007-04-16
2007-01-0348
In a previous study, we developed and validated a new driving posture focused on biomechanical loads for physical fatigue reduction in static long-term sitting. In this study, the posture was evaluated in dynamic long-term driving condition by qualitative and quantitative measurements. The results showed physical fatigue of the new posture was halved in comparison with the one of the conventional posture in same car by subjective evaluations. Physiological indices had same tendency with subjective evaluations. From the results, we extracted seven physiological indices as good measures of physical fatigue while driving. Therefore, fatigue reduction of the new posture was qualitatively validated by physiological measurements.
Technical Paper

Analysis of the Deterioration of Nylon-66 Immersed in GTL Diesel Fuel Part 1. Analysis and Test of Nylon and GTL Diesel Fuel Before and After Immersion

2006-10-16
2006-01-3326
The effect of GTL diesel fuel on organic materials used in fuel delivery systems of vehicles was investigated. Specimens made from 16 kinds of organic materials were immersed in GTL diesel fuels synthesized at Refinery-A and Refinery-B (referred to as GTL-A and GTL-B, respectively) and then subjected to tensile testing. The tensile test results revealed that elongation of the nylon sample immersed in GTL-A was extremely small, about 4% of that of untreated nylon. In the light of this finding, the GTL diesel fuels and nylons before and after immersion test were analyzed in detail using about 20 analysis methods to determine the cause for poor elongation. The following points were found. (1) GTL-A consisted of low molecular-weight paraffins. (2) GTL-A had low molecular-weight i-paraffins. (3) The nylon immersed in GTL-A contained low molecular-weight paraffins. (4) The paraffins in the nylon immersed in GTL-A were richer in i-paraffins than the original GTL-A.
Technical Paper

Analysis of the Deterioration of Nylon-66 Immersed in GTL Diesel Fuel Part 2. Analysis of Model Fuel and Nylon Before and After Immersion

2006-10-16
2006-01-3327
In a previous paper (Part 1 of this series), nylon-66 specimens were immersed in two GTL diesel fuels (GTL-A and GTL-B) and then subjected to tensile testing. The tensile test results revealed that the elongation of the specimen immersed in GTL-A was dramatically reduced. The GTL diesel fuels and nylon specimens before and after immersion were analyzed to determine the cause of the decline in elongation. It was found that the poor elongation was caused by penetration and oxidation of low molecular-weight paraffins and that the ease of penetration and oxidation of paraffin depended on the structure of paraffin. In this paper, the low molecular-weight paraffins detected in GTL-A were mixed to produce model fuels. Then, pieces of nylon cut from the tensile test specimen, were immersed in the model fuels. In addition, partial oxidation products of the paraffin (alcohol, aldehyde or ketone and acid) were used in immersion tests of the nylon pieces.
X