Refine Your Search

Topic

Author

Search Results

Technical Paper

Validation of Wireless Power Transfer up to 11kW Based on SAE J2954 with Bench and Vehicle Testing

2019-04-02
2019-01-0868
Wireless Power Transfer (WPT) promises automated and highly efficient charging of electric and plug-in-hybrid vehicles. As commercial development proceeds forward, the technical challenges of efficiency, interoperability, interference and safety are a primary focus for this industry. The SAE Vehicle Wireless Power and Alignment Taskforce published the Recommended Practice J2954 to help harmonize the first phase of high-power WPT technology development. SAE J2954 uses a performance-based approach to standardizing WPT by specifying ground and vehicle assembly coils to be used in a test stand (per Z-class) to validate performance, interoperability and safety. The main goal of this SAE J2954 bench testing campaign was to prove interoperability between WPT systems utilizing different coil magnetic topologies. This type of testing had not been done before on such a scale with real automaker and supplier systems.
Technical Paper

Development of Plastic Region Tightening 1.6-GPa Ultra-High Strength Bolt with High Delayed Fracture Resistance

2019-04-02
2019-01-1116
A new variable compression turbo (VC-Turbo) engine, which has a multi-link system for controlling the compression ratio from 8:1 to 14:1, requires high axial force for fastening the multi-links because of high input loads and the downsizing requirement. Therefore, it was necessary to develop a 1.6-GPa tensile strength bolt with plastic region tightening. One of the biggest technical concerns is delayed fracture. In this study, quenched and tempered alloy steels were chosen for the 1.6-GPa tensile strength bolt.
Technical Paper

Development of Resin Overlay Bearing Material for Recent Automotive Engine

2017-03-28
2017-01-0460
The number of vehicles with engines using idling stop systems and hybrid systems to improve fuel consumption has recently been increasing. However, with such systems the frequent starts and stops of the engine, where the oil film between the bearings and shaft is squeezed out and direct contact between the components is more likely, can result in increased wear of the engine bearings, particularly in the main bearing. Bearings with resin overlays have been shown to display superior resistance to wear from such start-stop cycles. Moreover, cast iron shafts without quenching treatment have also been used in engines for cost reduction. Because the cast shaft has low hardness and unstable surface graphite after abrasive finishing, increase in the wear amount cannot be suppressed by conventional resin overlay in comparison with steel shaft. Therefore, the resin overlay with improved wear resistance achieved by adding hard particles was developed.
Journal Article

Development of Low Viscosity API SN 0W-16 Fuel-Saving Engine Oil Considering Chain Wear Performance

2017-03-28
2017-01-0881
A low viscosity API SN 0W-16 engine oil was developed to achieve a 0.5% improvement in fuel efficiency over the current GF-5/API SN 0W-20 oil. Oil consumption and engine wear are the main roadblocks to the development of low viscosity engine oils. However, optimization of the base oil and additives successfully prevent oil consumption and wear. First, it was confirmed in engine tests that NOACK volatility is still an effective indicator of oil consumption even for a low viscosity grade like 0W-16. As a result of base oil volatility control, the newly developed oil achieves the same level of oil consumption as the current GF-5/API SN 0W-20 oil. Second, it was found that the base oil viscosity and molybdenum dithiocarbamate (MoDTC) had a significant effect on chain wear in rig testing that simulated silent chain wear. For the same base oil viscosity, the new oil maintains the same oil film thickness under high surface pressure.
Technical Paper

A Study of Resin Overlay Bearing Material for Recent Automotive Engines

2013-04-08
2013-01-1394
With increased awareness of environmental issues and regulations, developments for recent automotive engines are progressing towards engines with low fuel consumption. Due to these changes, automotive engine bearings are increasingly used in harsher environments, with higher loading and corresponding wear. From this background, resin overlays, where solid lubricant is dispersed in a resin binder, are being developed. Resin overlays show excellent sliding properties under boundary lubrication conditions, and are known to have superior wear and fatigue resistance compared with conventional aluminium based bearings. However, while conventional resin overlay bearings display excellent sliding properties, they tend to have inferior seizure resistance compared to Al-Sn-Si alloy bearings. In this study, by optimizing the strength of the resin overlay layer with addition of calcium carbonate particles, a resin overlay with equal wear resistance but improved seizure resistance was developed.
Technical Paper

High Power Density Motor and Inverter for RWD Hybrid Vehicles

2011-04-12
2011-01-0351
This paper describes the motor and inverter of Nissan's newly developed parallel hybrid system for rear-wheel-drive hybrid vehicles. The new system incorporates a high-power lithium-ion battery and a one-motor-two-clutch powertrain to achieve both highly responsive acceleration and better fuel economy. As the main components of the hybrid system, both the motor and the inverter have been developed and are manufactured in house to attain high power density for providing responsive acceleration, a quiet EV drive mode and improved fuel economy. Because the motor is located between the engine and the transmission, it had to be shortened to stay within the length allowed for the powertrain. The rotary position sensor and clutch actuator are located inside the rotor to meet the size requirement. High-density winding of square-shaped wire and a small power distribution busbar also contribute to the compact configuration.
Journal Article

A Study on Wear Progress of Plain Bearing under Mixed Lubrication Condition

2011-04-12
2011-01-0609
Recently, automotive engines have been operating under harsh conditions of high-power, low viscosity oil and increase of start-stop (e.g. idling stop). In plain bearing used within engine, as oil film thickness decreases, the frequency of direct contacts on the sliding surfaces between the shaft and the bearing are gradually increasing. In fact, the plain bearings for engines would tend to be used under mixed lubrication and the contacts of the surface roughness asperities sometimes occur between the shaft and the bearing. As a result, the bearing wear on the sliding surfaces is accelerated by the contacts of the roughness asperities. In order to predict the bearing performance exactly, it is very important to understand the change progress of the geometric shape of sliding surfaces caused by the wear.
Technical Paper

A Lubrication Analysis of Multi Link VCR Engine Components using a Mixed Elasto-Hydrodynamic Lubrication Theory Model

2009-04-20
2009-01-1062
Research is under way on an engine system [1] that achieves a variable compression ratio using a multiple-link mechanism between the crankshaft and pistons for the dual purpose of improving fuel economy and power output. At present, there is no database that allows direct judgment of the feasibility of the specific sliding parts in this mechanism. In this paper, the feasibility was examined by making a comparison with the sliding characteristics and material properties of conventional engine parts, for which databases exist, and using evaluation parameters based on mixed elasto-hydrodynamic (EHD) lubrication calculations. In addition, the innovations made to the mixed EHD calculation method used in this study to facilitate calculations under various lubrication conditions are also explained, including the treatment of surface roughness, wear progress and stiffness around the bearings.
Technical Paper

Evaluations of Physical Fatigue during Long-term Driving with a New Driving Posture

2007-04-16
2007-01-0348
In a previous study, we developed and validated a new driving posture focused on biomechanical loads for physical fatigue reduction in static long-term sitting. In this study, the posture was evaluated in dynamic long-term driving condition by qualitative and quantitative measurements. The results showed physical fatigue of the new posture was halved in comparison with the one of the conventional posture in same car by subjective evaluations. Physiological indices had same tendency with subjective evaluations. From the results, we extracted seven physiological indices as good measures of physical fatigue while driving. Therefore, fatigue reduction of the new posture was qualitatively validated by physiological measurements.
Technical Paper

Analysis of Tooth Surface Fatigue Strength of Automotive Transmission Gears

2007-04-16
2007-01-0117
The life of automotive transmission gears today is often governed by pitting fatigue life. Being able to predict pitting fatigue life accurately is a crucial issue. Pitting fatigue life is substantially influenced by surface hardness and tooth surface geometry. For that reason, this study examined a new method of predicting pitting fatigue life that takes into account changes in these factors over time. This method makes it possible to predict the pitting fatigue life of automotive transmission gears under a wide range of evaluation conditions with markedly better accuracy than conventional methods used previously.
Technical Paper

Development of a New Driving Posture Focused on Biomechanical Loads

2006-04-03
2006-01-1302
Fatigue resulting from long-term driving can be classified into physical and mental fatigue. Physical fatigue seems to be mainly caused by driving posture. The purpose of this study is to develop a new driving posture for reduction of causal factors of physical fatigue, that is, biomechanical loads caused by the posture. In this paper, driving posture was optimized by subjective optimizations of seat contours and biomechanical analysis considering necessary conditions for driving operations and forward view. The new driving posture was tested by subjective evaluations and pelvic movement measurements. It was found that the new posture reduced physical fatigue dramatically.
Technical Paper

Studies on Lead-free Resin Overlay for Engine Bearings

2006-04-03
2006-01-1104
Resin-based overlays as lead-free bearing materials for automobile engines are experimentally studied using tribology testing apparatus and an engine bench test rig. A resin overlay newly proposed is composed of Polybenzimidazole (PBI) as the base resin and solid lubricant Molybdenum disulfide (MoS2) as an additive. PBI has high temperature performance and good adhesion and physical strength under higher temperatures. Consequently, a PBI-based overlay has good sliding properties in terms of wear resistance and fatigue resistance. The resin overlay shows applicability to automobile engine bearings which are used under high loads.
Technical Paper

Development of Lead Free Copper Based Alloy for Piston Pin Bushing Under Higher Load Engines

2006-04-03
2006-01-1105
As the recent engines are designed for higher performance, piston pin bushing used for small end of connecting rod must endure higher dynamic load and oil temperature conditions. Therefore, the bushing is required higher wear resistance and anti-corrosion. And it is also expected to develop the bushing without lead due to environmental concerns. In this report, lead free copper based bushing alloy was studied. At first, in order to keep the anti-seizure property without lead, we studied the effects of hard particles added into copper based alloy. Second, we evaluated the effect of addition of hard particles on wear resistance and anti-corrosion.
Technical Paper

A Study on the Cyclic Plastic Zone Size Method, ω*, for Digital Fatigue Life Prediction of Arc-Welded Joints

2003-10-27
2003-01-2835
Various prediction methods have been proposed for evaluating the fatigue life of welded joints by combining finite element analysis (FEA) with an experimental database. However, to obtain more universal and accurate fatigue life predictions, it is necessary to have criteria for making integrated evaluations of the fatigue strength of welded joints. This paper presents a study that focuses on the local cyclic plastic zone size (ω*) as the criterion of fatigue strength and investigates its validity. The definition of ω* was given by the relationship between the stress state at the notch tip and the elastic strain which was defined along the strain-life fatigue curve (ε - N diagram) of a base metal. As a result of using ω*, it was found that an integrated fatigue life prediction was possible to a certain extent for notch and arc-welded joint specimens.
Technical Paper

Development of Multi-layer Aluminum-Tin-Silicon Alloy Bearing for Automotive Diesel Engine

2003-03-03
2003-01-0050
Recent engine bearings are operating under severe conditions to support such engine requirements as lower fuel consumption, longer life and protection of global environment. On Al-Sn-Si alloy bearings, it has some issue that fatigue may occur on the bearing alloy under severe condition such as in automotive diesel engines. Higher strength of alloy, which allows the fatigue resistance, can be obtained by solid solution treatment at higher temperature in general. But at the same time it makes intermetallic compounds with less bonding strength between intermediate layer and steel backing. A new bearing without lead has been developed by applying the heat treatment of bimetal and adequate intermediate layer for the process, consequently concluded to have the higher fatigue strength, with usual property on Al-Sn-Si alloy bearings.
Technical Paper

Work Hardening and Strength Analysis of Steel Structure with Special Cross Section

2002-07-09
2002-01-2114
This paper presents the results of a strength analysis of a newly developed steel structure featuring a special cross section achieved with the hydroforming process that minimizes the influence of springback. This structure has been developed in pursuit of further weight reductions for the steel body in white. A steel tube with tensile strength of 590 MPa was fabricated in a low-pressure hydroforming operation, resulting in thicker side walls. The results of a three-point bending test showed that the bending strength of the new steel structure with thicker side walls was substantially increased. A finite element crush analysis based on the results of a forming analysis was shown to be effective in predicting the strength of the structure, including the effect of work hardening.
Technical Paper

Thermal Fatigue Life of Exhaust Manifolds Predicted by Simulation

2002-03-04
2002-01-0854
A combined computational fluid dynamics (CFD) and finite element (FE) analysis approach has been developed to simulate in the early stages of design the temperature distribution and estimate the thermal fatigue life of an engine exhaust manifold. To simulate the temperature distribution under actual operating conditions, we considered the external and internal flow fields. Digital mock-ups of the vehicle and engine were used to define the geometry of the engine compartment. External-air-flow simulation using in-house CFD code was used to predict the flow fields in the engine compartment and the heat transfer coefficients between the air and the exhaust manifold wall at various vehicle speeds. Unsteady-gas-flow calculation using the STAR-CD thermal- fluids analysis code was to predict the heat transfer coefficients between the exhaust gas and the manifold wall under various operating conditions.
Technical Paper

Development of Pitting Resistant Steel for Transmission Gears

2001-03-05
2001-01-0827
It was found that pitting resistance of gears is strongly influenced by resistance to temper softening of carburized steel. The investigation about the influence of chemical compositions on hardness after tempering revealed that silicon, chromium and molybdenum are effective elements to improve resistance to temper softening and pitting resistance. Considering the production of gears, molybdenum is unfavorable because it increases hardness of normalized or annealed condition. Developed new steel contains about 0.5 mass% of silicon and 2.7 mass% chromium. The new steel has excellent pitting resistance and wear resistance. Fatigue and impact strength are equivalent to conventional carburized steels. Cold-formability and machinability of the new steel are adequate for manufacturing gears because of its ordinary hardness before carburizing. The new steel has already been put to practical use in automatic transmission gears. Application test results are also reported.
Technical Paper

Development of the Sequence IVA Valve Train Wear Lubricant Test: Part 1

2000-06-19
2000-01-1820
The ASTM Sequence VE test evaluates lubricant performance for controlling sludge deposits and minimizing overhead camshaft lobe wear. ILSAC asked JAMA to develop a new valve train wear replacement test since the Sequence VE test engine hardware will become obsolete in the year 2000. JAMA submitted the JASO specification M 328-951) KA24E valve train wear test. This first report presents the results of technical studies conducted when JASO M 328-95 was reviewed and the ASTM standardized version of the KA24E test (the Sequence IVA) was proposed. The cam wear mechanism was studied with the goal of improving reproducibility and repeatability. Engine torque was specified to stabilize the NOx concentration in blow-by, which improved test precision. Additionally, the specifications for induction air humidity and temperature, oil temperature control, and test fuel composition were modified when the ASTM version of the KA24E test was proposed.
Technical Paper

Method of Fatigue Life Estimation for Arc–Welded Structures

2000-03-06
2000-01-0781
Two working groups in the JSAE Committee of Fatigue–Reliability Section1 are currently researching the issue of fatigue life by both experimental and the CAE approach. Information regarding frequent critical problems on arc–welded structures were sought from auto–manufacturers, vehicle component suppliers, and material suppliers. The method for anti–fatigue design on arc–welded structures was established not only by a database created by physical test results in accordance with the collected information but also with design procedure taking Fracture–Mechanics into consideration. This method will be applied to vehicle development as one of the virtual laboratories in the digital prototype phase. In this paper, both the database from bench–test results on arc welded structures and FEA algorithm unique to JSAE are proposed some of the analysis results associated with the latter proposal are also reported.
X