Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Characterizing Galling Conditions in Sheet Metal Stamping

2024-04-09
2024-01-2856
Multiple experimental studies were performed on galling intiation for variety of tooling materials, coatings and surface treatments, sheet materials with various surface textures and lubrication. Majority of studies were performed for small number of samples in laboratory conditions. In this paper, the methodology of screening experiment using different combinations of tooling configurations and sheet material in the lab followed by the high volume small scale U-bend performed in the progressive die on the mechanical press is discussed. The experimental study was performed to understand the effect of the interface between the sheet metal and the die surface on sheet metal flow during stamping operations. Aluminum sheet AA5754 2.5mm thick was used in this experimentation. The sheet was tested in laboratory conditions by pulling between two flat insert with controllable clamping force and through the drawbead system with variable radii of the female bead.
Technical Paper

The Influence of Sample Geometry on the Mechanical Properties and Failure Mechanisms of 6111 Aluminum Alloy Tensile Specimens

2024-04-09
2024-01-2280
This research focuses on the commercial 6111 aluminum alloy as the subject of investigation. By designing tensile specimens with the same characteristic dimensions but varying fillet radii, the effects of fillet radius on the tensile properties and stress concentration effects of the aluminum alloy were studied through tensile testing and digital image correlation techniques. The results demonstrate that with an increase in fillet radius, the failure strength and stress distribution of the aluminum alloy specimens have both undergone alterations. This phenomenon can be attributed to the reduction of stress concentration at the fillet due to the larger fillet radius. Further verification through digital image correlation reaffirms that samples with a fillet radius of 10mm exhibit notable stress concentration effects at the fillet, while specimens with a fillet radius increased to 40mm display uniform plastic deformation across the parallel section.
Technical Paper

Amplitude Method for Detecting Debonding in Stack Bond Adhesive

2024-03-13
2024-01-5033
Adhesively bonded joints have been applied in the automotive industry for the past few decades due to their advantages such as higher fatigue resistance, light weight, capability of joining dissimilar materials, good energy absorption, and high torsional stiffness for overall body structure. They also provide an effective seal against noise and vibration at a low cost. There exists the challenge of defining the fatigue characteristics of adhesive joints under cyclic loading conditions, and conventional methods have limitations in detecting the crack initiation of a bonded joint. This study introduces a method of detecting crack initiation by using the frequency method. It is found that stiffness change in the system is highly correlated to change in natural frequencies. By monitoring the change in natural frequencies, the crack initiation can be detected.
Technical Paper

Tooth Mesh Characterization of Spur Gear Pairs with Surface Pitting Damage

2023-04-11
2023-01-0458
A finite element/contact mechanics (FE/CM) method is used to determine the tooth contact forces, static transmission error, and tooth pair stiffnesses for spur gear pairs that have pitting damage. The pitting damage prevents portions of the tooth surface from carrying load, which results in meaningfully different contact pressure distribution on the gear teeth and deformations at the mesh. Pits of elliptical shape are investigated. Parametric analyses are used to investigate the effect of pit width (along the tooth face) and height (along the tooth profile) on the gear tooth mesh interface. Pitting damage increases static transmission error and decreases tooth pair stiffness. Tooth contact forces differ only in the portions of the mesh cycle when multiple pairs of teeth are in contact and share the transmitted load. Pitting damage does not change the loads when only a single pair of teeth are in contact.
Journal Article

Suction Cup Quality Predication by Digital Image Correlation

2023-04-11
2023-01-0067
Vacuum suction cups are used as transforming handles in stamping lines, which are essential in developing automation and mechanization. However, the vacuum suction cup will crack due to fatigue or long-term operation or installation angle, which directly affects production productivity and safety. The better design will help increase the cups' service life. If the location of stress concentration can be predicted, this can prevent the occurrence of cracks in advance and effectively increase the service life. However, the traditional strain measurement technology cannot meet the requirements of tracking large-field stains and precise point tracking simultaneously in the same area, especially for stacking or narrow parts of the suction cups. The application must allow multiple measurements of hidden component strain information in different fields of view, which would add cost.
Journal Article

A Subdomain Approach for Uncertainty Quantification of Long Time Horizon Random Processes

2023-04-11
2023-01-0083
This paper addresses the uncertainty quantification of time-dependent problems excited by random processes represented by Karhunen Loeve (KL) expansion. The latter expresses a random process as a series of terms involving the dominant eigenvalues and eigenfunctions of the process covariance matrix weighted by samples of uncorrelated standard normal random variables. For many engineering appli bn vb nmcations, such as random vibrations, durability or fatigue, a long-time horizon is required for meaningful results. In this case however, a large number of KL terms is needed resulting in a very high computational effort for uncertainty propagation. This paper presents a new approach to generate time trajectories (sample functions) of a random process using KL expansion, if the time horizon (duration) is much larger than the process correlation length.
Technical Paper

Fatigue Endurance Limit of Fasteners in Automotive Application

2022-03-29
2022-01-0260
Fasteners, commonly used in automotive industry, play an important role in the safety and reliability of the vehicle structural system. In practical application, bolted joints would never undergo fully reversed loading; there always will be positive mean stress on bolt. The mean stress has little influence on the fatigue life if the maximum stress is lower than a threshold which is near the yield stress of the bolt. However, when the sum of the mean stress and the stress amplitude exceeds the threshold, the endurance limit stress amplitude decreases fast as the mean stress increases. The purpose of this paper is to research the fatigue endurance limit of a fastener and establish the threshold for safe design in automotive application. In order to obtain the fatigue endurance limit at different mean stress levels, various mechanical tests were performed on M12x1.75 and M16x1.5 Class 10.9 fasteners using MTS test systems.
Technical Paper

Defining the Boundary Conditions of the CFR Engine under MON Conditions, and Evaluating Chemical Kinetic Predictions at RON and MON for PRFs

2021-04-06
2021-01-0469
Expanding upon the authors’ previous work which utilized a GT-Power model of the Cooperative Fuels Research (CFR) engine under Research Octane Number (RON) conditions, this work defines the boundary conditions of the CFR engine under Motored Octane Number (MON) test conditions. The GT-Power model was validated against experimental CFR engine data for primary reference fuel (PRF) blends between 60 and 100 under standard MON conditions, defining the full range of interest of MON for gasoline-type fuels. The CFR engine model utilizes a predictive turbulent flame propagation sub-model, and a chemical kinetic solver for the end-gas chemistry. The validation was performed simultaneously for thermodynamic and chemical kinetic parameters to match in-cylinder pressure conditions, burn rate, and knock point prediction with experimental data, requiring only minor modifications to the flame propagation model from previous model iterations.
Technical Paper

A Fresh Perspective on Hypoid Duty Cycle Severity

2021-04-06
2021-01-0707
A new method is demonstrated for rating the “severity” of a hypoid gear set duty cycle (revolutions at torque) using the intercept of T-N curve to support gearset selection and sizing decision across vehicle programs. Historically, it has been customary to compute a cumulative damage (using Miner's Rule) for a rotating component duty cycle given a T-N curve slope and intercept for the component and failure mode of interest. The slope and intercept of a T-N curve is often proprietary to the axle manufacturer and are not published. Therefore, for upfront sizing and selection purposes representative T-N properties are used to assess relative component duty cycle severity via cumulative damage (non-dimensional quantity). A similar duty cycle severity rating can also be achieved by computing the intercept of the T-N curve instead of cumulative damage, which is the focus of this study.
Technical Paper

Digital Image Correlation Based Real-Time Fatigue Feedback System Study

2020-04-14
2020-01-0539
Fatigue testing is a specialized form of mechanical testing that is performed by applying cyclic loading to a coupon or structure. Two common forms of fatigue testing are load controlled high cycle and strain controlled low cycle fatigue. Some strain measurement device, such as extensometers, strain gage, that are often used as a feedback sensor on strain controlled fatigue test. However, in applications where strain controlled fatigue testing could face some extreme conditions as well as high temperature and unusual sizing which requires the strain measurement to be nondestructive and full field. While digital image correlation (DIC), an advanced optical measurement technique, has a decent solution on challenges of fatigue testing measurement. The problem is how to turn DIC from a measurement system to a feedback controller unit. Due to the developments in camera and computation techniques, the sequential process can now be performed as a parallel process.
Technical Paper

Improved Wear Resistance of Austempered Gray Cast Iron Using Shot-Peening Treatment

2020-04-14
2020-01-1098
In this research, ball-on-plate reciprocating sliding wear tests were utilized on austempered and quench-tempered gray cast iron samples with and without shot-peening treatment. The wear volume loss of the gray cast iron samples with different heat treatment designs was compared under equivalent hardness. The phase transformation in the matrix was studied using metallurgical evaluation and hardness measurement. It was found that thin needle-like ferrite became coarse gradually with increasing austempering temperature and was converted into feather-like shape when using the austempering temperatures of 399°C (750°F). The residual stress on the surface and sub-surface before and after shot-peening treatment was analyzed using x-ray diffraction. Compressive residual stress was produced after shot-peening treatment and showed an increasing trend with austempering temperature.
Technical Paper

Experimental and Analytical Study of Drawbead Restraining Force for Sheet Metal Drawing Operations

2020-04-14
2020-01-0753
Design of sheet metal drawing processes requires accurate information about the distribution of restraining forces, which is usually accomplished by a set of drawbeads positioned along the perimeter of the die cavity. This study is targeting bringing together the results of finite element analysis and experimental data in order to understand the most critical factors influencing the restraining force. The experimental study of the restraining force was performed using drawbead simulator tool installed into a tensile testing machine. Based upon the experimental results, it was observed that the restraining force of the given drawbead configuration is dependent upon the depth of bead penetration, friction between the drawbead surfaces as well as the clearance between the flanges of the drawbead simulator. This clearance is often adjusted during stamping operations to increase or decrease material inflow into the die cavity without any modification in the die.
Technical Paper

Development of a Novel Test System to Determine the Durability of RTV Gasket Material

2020-04-14
2020-01-1069
This paper describes a laboratory-based test system and procedure for determining the durability of RTV sealant with fretting movement. A test machine is described in which shear and tensile stress-generating displacements at room temperature and temperature of 100°C are produced to load an RTV seal. The test system utilizes an air pressurized hollow cylinder with a cap sealed by RTV sealant on a reciprocating test rig. An external air leakage monitoring system detects the health of the tested RTV seal. When air leakage occurs, the seal is determined to have failed. RTV sealant used in the test was fully cured at room temperature and then aged with engine oil. In the experiments, a total of 6 displacements were used to generate cycle/amplitude graphs for both shear and tensile modes. Failures were determined to be caused by the loss of adhesion in tensile mode, and by crack nucleation due to the special step design in shear mode.
Technical Paper

Tracking Panel Movement during Stamping Process Using Advanced Optical Technology

2020-04-14
2020-01-0541
Metal panels are comprehensively applied in the automotive industry. A significant issue with metal panels is the deflection when moving in the press line of the stamping process. Unpredictable deflection could result in the cut off of the press line. To control the deflection in a safe zone, finite element tools are used to simulate the panel transform process. However, the simulation requires experimental validation where conventional displacement measurement techniques could not satisfy the requirement of vast filed displacement and accuracy point tracking. In this study, multi-camera digital image correlation (DIC) systems have been developed to track the movement of panels during the press line of the stamping process. There are some advantages of applying the DIC system, including non-contact, full-field, high accuracy, and direct measurement techniques that provide the evaluation displacement of the metal panel and press line.
Journal Article

Assessing Fit and Finish Design Sensitivity by Mapping Measurements to Utility

2020-04-14
2020-01-0600
This paper proposes a method to evaluate the sensitivity of the perceived quality of a panel interface design to variation in the measurements of fit and finish. The novelty of this approach is in the application of the concept of utility to fit and finish. The significance is in the ability to evaluate alternative designs with regard to perceived quality long before time and money are spent on their realization. In the automotive industry “fit and finish” is the term applied to the precision of the alignment of one part to another. Fit and finish gives the buyer a sense of the overall quality of the vehicle purely from an aesthetic perspective. Fit and finish is usually evaluated by the manufacturer through dimensional measurements of the gap and flushness conditions between panels.
Technical Paper

Modelling of a Discrete Variable Compression Ratio (VCR) System for Fuel Consumption Evaluation - Part 2: Modelling Results

2019-04-02
2019-01-0472
Variable Compression Ratio systems are an increasingly attractive solution for car manufacturers in order to reduce vehicle fuel consumption. By having the capability to operate with a range of compression ratios, engine efficiency can be significantly increased by operating with a high compression ratio at low loads, where the engine is normally not knock-limited, and with a low compression ratio at high load, where the engine is more prone to knock. In this way, engine efficiency can be maximized without sacrificing performance. This study aims to analyze how the effectiveness of a VCR system is affected by various powertrain and vehicle parameters. By using a Matlab model of a VCR system developed in Part 1 of this work, the influence of the vehicle characteristics, the drive cycle, and of the number of stages used in the VCR system was studied.
Technical Paper

Experimental Study of Springback (Side-Wall-Curl) of Sheet Metal based on the DBS System

2019-04-02
2019-01-1088
Springback is a common phenomenon in automotive manufacturing processes, caused by the elastic recovery of the internal stresses during unloading. A thorough understanding of springback is essential for the design of tools used in sheet metal forming operations. A DBS (Draw-bead Simulator) has been used to simulate the forming process for two different sheet metals: aluminum and steel. Two levels of pulling force and two die radii have been enforced to the experimental process to get different springback. Also, the Digital Image Correlation (DIC) system has been adopted to capture the sheet contour and measure the amount of side-wall-curl (sheet springback) after deformation. This paper presents the influence of the material properties, force, and die radius on the deformation and springback after forming. A thorough understanding of this phenomenon is essential, seeing that any curvature in the part wall can affect quality and sustainability.
Technical Paper

Experimental Drawbeads Design Research

2019-04-02
2019-01-1087
In order to constrain the restraining force and control the speed of metal flow, drawbeads are widely used in industry. They prevent wrinkling or necking in formed panels, reduce the binder force, and minimize the usage of sheet metal to make a part. Different drawbead configurations can satisfy various stamping production. Besides local design of drawbeads, other factors like pulling directions, binder angles and single or multiple beads play an important role too. Moreover, it was found that the same beads configuration can own a different rate of change of pulling force on different gaps by experience. In this paper, to study the effect of each factor, the Aluminum and Steel sheet metals were tested to obtain the pulling force as they passed through a draw bead. Three gap cases between a male and a female beads are set to figure out the trend of pulling force.
Technical Paper

A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress

2019-04-02
2019-01-0946
Flame speed data reported in most literature are acquired in conventional apparatus such as the spherical combustion bomb and counterflow burner, and are limited to atmospheric pressure and ambient or slightly elevated unburnt temperatures. As such, these data bear little relevance to internal combustion engines and gas turbines, which operate under typical pressures of 10-50 bar and unburnt temperature up to 900K or higher. These elevated temperatures and pressures not only modify dominant flame chemistry, but more importantly, they inevitably facilitate pre-ignition reactions and hence can change the upstream thermodynamic and chemical conditions of a regular hot flame leading to modified flame properties. This study focuses on how auto-ignition chemistry affects flame propagation, especially in the negative-temperature coefficient (NTC) regime, where dimethyl ether (DME), n-heptane and iso-octane are chosen for study as typical fuels exhibiting low temperature chemistry (LTC).
Technical Paper

Bendability Study of 7xxx Aluminum Alloy Based on the DIC Technique

2019-04-02
2019-01-1265
Bendability is a critical characteristic of sheet metal during the stamping process in automobile industry. Bending operation plays an important role in the panels forming of vehicles. In this study, the recently developed “Incremental Bending” method was utilized to evaluate the ambient bendability of 7xxx series avoiding bending crack. A 3D digital image correlation (DIC) measurement system is improved to capture the displacement and strain information on the stretched side of the sheet samples. The background, experimental method and data post-procedure are introduced in detail. After several sequential images acquisition and data processing, the major strain histories on the stretch zone of the samples are measured. With different bending process and parameters, the location of peak strain and the surface major strain distribution were evaluated as a function of R/T ratio (the inner radius over sheet thickness).
X