Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Physics-Based Exhaust Pressure and Temperature Estimation for Low Pressure EGR Control in Turbocharged Gasoline Engines

2016-04-05
2016-01-0575
Low pressure (LP) and cooled EGR systems are capable of increasing fuel efficiency of turbocharged gasoline engines, however they introduce control challenges. Accurate exhaust pressure modeling is of particular importance for real-time feedforward control of these EGR systems since they operate under low pressure differentials. To provide a solution that does not depend on physical sensors in the exhaust and also does not require extensive calibration, a coupled temperature and pressure physics-based model is proposed. The exhaust pipe is split into two different lumped sections based on flow conditions in order to calculate turbine-outlet pressure, which is the driving force for LP-EGR. The temperature model uses the turbine-outlet temperature as an input, which is known through existing engine control models, to determine heat transfer losses through the exhaust.
Journal Article

Assessment of Cooled Low Pressure EGR in a Turbocharged Direct Injection Gasoline Engine

2015-04-14
2015-01-1253
The use of Low Pressure - Exhaust Gas Recirculation (EGR) is intended to allow displacement reduction in turbocharged gasoline engines and improve fuel economy. Low Pressure EGR designs have an advantage over High Pressure configurations since they interfere less with turbocharger efficiency and improve the uniformity of air-EGR mixing in the engine. In this research, Low Pressure (LP) cooled EGR is evaluated on a turbocharged direct injection gasoline engine with variable valve timing using both simulation and experimental results. First, a model-based calibration study is conducted using simulation tools to identify fuel efficiency gains of LP EGR over the base calibration. The main sources of the efficiency improvement are then quantified individually, focusing on part-load de-throttling of the engine, heat loss reduction, knock mitigation as well as decreased high-load fuel enrichment through exhaust temperature reduction.
Technical Paper

Investigations of the Effect of Ambient Condition on SACI Combustion Range

2015-04-14
2015-01-0828
HCCI (Homogeneous Charge Compression Ignition) has the potential for significant fuel efficiency improvements and low engine-out emissions but a major limitation is its relatively small operating range, limited by pressure rise rate at high loads and cyclic variability and incomplete combustion at low loads. Spark Assisted Compression Ignition (SACI) can extend the operating range of HCCI, but since SACI includes both flame propagation and auto-ignition, it experiences higher cyclic variance than HCCI combustion and phasing control can be challenging. This paper investigates the effects of environmental conditions on SACI combustion. The first part of the paper investigates whether CA50 (the location of 50% heat release and the most commonly used combustion parameter for describing combustion phasing) is the best metric to describe combustion phasing and facilitate its control. CA50 and four other combustion phasing metrics are evaluated and compared in this study.
Journal Article

Steady-State Combustion Development of a Downsized Multi-Cylinder Engine with Range Extended HCCI/SACI Capability

2013-04-08
2013-01-1655
This paper focuses on the combustion development portion of the Advanced Combustion Controls Enabling Systems and Solutions (ACCESS) project, a joint research project partially funded by a Department of Energy grant. The main goal of the project is to improve fuel economy in a gasoline fueled light-duty vehicle by 30% while maintaining similar performance and meeting SULEV emission standards for the Federal Test Procedure (FTP) cycle. In this study, several combustion modes Spark Ignited (SI), Homogeneous Charge Compression Ignition (HCCI), Spark- Assisted Compression Ignition (SACI)) were compared under various conditions (naturally aspirated, boosted, lean, and stoichiometric) to compare the methods of controlled auto-ignition on a downsized, boosted multi-cylinder engine with an advanced valvetrain system capable of operating under wide negative valve overlap (NVO) conditions.
Journal Article

Design of a 4-Cylinder GTDI Engine with Part-Load HCCI Capability

2013-04-08
2013-01-0287
This paper focuses on the engine design portion of the Advanced Combustion Controls Enabling Systems and Solutions (ACCESS) project, a joint research project partially funded by a Department of Energy grant. The main goal of the project is to improve fuel economy in a gasoline fueled light-duty vehicle by 25% while maintaining similar performance and meeting SULEV emission standards. A Cadillac CTS with a high-feature naturally-aspirated 3.6L V6 engine was chosen as the baseline vehicle. To achieve the target fuel economy improvement over the baseline engine configuration, gasoline turbocharged direct-injection (GTDI) technology was utilized for engine downsizing in combination with part-load lean homogeneous charge compression ignition (HCCI) operation for further fuel economy gains. The GM 2.0L I4 GTDI Ecotec engine was used as the platform for the basis of this design.
Technical Paper

Energy Management - A Key Approach to Design The System Structure of Powertrain Control: Technology Leadership Brief

2012-10-08
2012-01-9007
The electrification of the powertrain, the diversity and the complexity of the more or less individual technical solutions which are preferred by different car manufacturers, create a steadily increasing challenge for the whole automotive industry. Missing standards and sales volumes still below the market expectations on the one hand, and the increasing interaction of the main powertrain domains (engine, transmission, e-drive) caused by upcoming cross domain functions on the other hand, lead to increasing development costs and non-optimal solutions concerning fuel economy improvement. Within the domain of engine management systems Bosch established in the mid-nineties the so called torque structure as the solution to a similar situation addressing the coordination of air management, fuel injection and ignition.
Technical Paper

Holistic Vehicle Energy Management - Moving Towards CAFE's Target

2011-04-12
2011-01-1014
EPA and NHTSA have harmonized Regulations for Greenhouse Gas (GHG) emissions and Corporate Average Fuel Economy (CAFE) for model year (MY) 2012-16, published on April 1st, 2010. This requirement applies to all passenger cars and light trucks. Therefore the reduction of CO₂ emissions will be a major challenge for the automotive industry in the coming years to achieve the targets (GHG & CAFE) of 250 g/mi CO₂ and 35.5 miles per gallon (mpg) for MY 2016. In addition to combustion engine improvements, vehicle energy management and operating strategies offer a huge potential to reduce CO₂ emissions through innovative electronic systems. The paper will show a possible implementation of a holistic vehicle energy management system including the operating strategy "Free wheeling." Starting from a top-down approach, we have developed operating strategies that offer the possibility to optimize the energy usage of the entire system.
Journal Article

SI Engine Hardware and Software Design for High Power, Low Emission Applications

2009-04-20
2009-01-0617
High technology, spark ignition direct injection (SIDI), engines are currently capable of achieving optimum horsepower and ULEV emissions levels. However, to meet the requirements of modern automotive powertrains, the task of increasing power density, improving fuel economy and reaching SULEV2 emissions is much more challenging. To achieve this, direct injection (DI) fuel systems offer the greatest precision and flexibility for engine fuel control. Features like high pressure start and improved catalyst heating, through multiple injections per combustion cycle, produce low engine-out emissions without the need for a secondary air injection system. This paper describes the analytical and experimental work done to achieve SULEV emissions levels for a twin-turbocharged derivative of General Motors (GM) high feature V6 engine.
Technical Paper

Parameterization and Simulation for a Turbocharged Spark Ignition Direct Injection Engine with Variable Valve Timing

2009-04-20
2009-01-0680
In recent years, advanced automotive technologies have been developed to increase engine output power and improve fuel economy. In order to design dedicated control algorithms for these cutting-edge techniques, a control-oriented model is developed in this paper to capture the behavior of a turbocharged Spark Ignition Direct Injection (SIDI) engine with Variable Valve Timing (VVT). In the proposed model, mean value models are employed to simulate the cycle-average dynamics of the airflow system, while a discrete-event model is used to capture the reciprocating engine combustion cycle. This model, established in Simulink, has been parameterized using experimental data that are collected from a four-cylinder SIDI engine over a wide range of operation conditions. The dynamic performance of this model was validated with data collected during engine transients.
X