Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

A Novel Approach to Real-Time Estimation of the Individual Cylinder Combustion Pressure for S.I. Engine Control

1999-03-01
1999-01-0209
Over the last decade, many methods have been proposed for estimating the in-cylinder combustion pressure or the torque from instantaneous crankshaft speed measurements. However, such approaches are typically computationally expensive. In this paper, an entirely different approach is presented to allow the real-time estimation of the in-cylinder pressures based on crankshaft speed measurements. The technical implementation of the method will be presented, as well as extensive results obtained for a V-6 S.I. engine while varying spark timing, engine speed, engine load and EGR. The method allows to estimate the in-cylinder pressure with an average estimation error of the order of 1 to 2% of the peak pressure. It is very general in its formulation, is statistically robust in the presence of noise, and computationally inexpensive.
Technical Paper

Two-Zone Heat Release Analysis of Combustion Data and Calibration of Heat Transfer Correlation in an I. C. Engine

1999-03-01
1999-01-0218
Typically, the combustion analysis for S.I. engines is limited to the determination of the apparent heat release from in-cylinder pressure measurements, effectively using a single zone approach with constant properties determined at some average temperature. In this paper, we follow an approach consistent with the engine modeling approach (i.e., reverse modeling) to extract heat release rate from combustion pressure data. The experimental data used here solely consists of quantities measured in a typical engine dynamometer tests, namely the crank-angle resolved cylinder pressure, as well as global measurements of the A/F ratio, engine speed, load, EGR, air mass flow rate and temperature and exhaust emissions. We then perform a two-zone, crank-angle resolved analysis of the pressure data using variable composition and properties.
X