Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

A Methodology of Design for Fatigue Using an Accelerated Life Testing Approach with Saddlepoint Approximation

We present an Accelerated Life Testing (ALT) methodology along with a design for fatigue approach, using Gaussian or non-Gaussian excitations. The accuracy of fatigue life prediction at nominal loading conditions is affected by model and material uncertainty. This uncertainty is reduced by performing tests at a higher loading level, resulting in a reduction in test duration. Based on the data obtained from experiments, we formulate an optimization problem to calculate the Maximum Likelihood Estimator (MLE) values of the uncertain model parameters. In our proposed ALT method, we lift all the assumptions on the type of life distribution or the stress-life relationship and we use Saddlepoint Approximation (SPA) method to calculate the fatigue life Probability Density Functions (PDFs).
Journal Article

Time-Dependent Reliability Analysis Using a Modified Composite Limit State Approach

Recent developments in time-dependent reliability have introduced the concept of a composite limit state. The composite limit state method can be used to calculate the time-dependent probability of failure for dynamic systems with limit-state functions of input random variables, input random processes and explicit in time. The probability of failure can be calculated exactly using the composite limit state if the instantaneous limit states are linear, forming an open or close polytope, and are functions of only two random variables. In this work, the restriction on the number of random variables is lifted. The proposed algorithm is accurate and efficient for linear instantaneous limit state functions of any number of random variables. An example on the design of a hydrokinetic turbine blade under time-dependent river flow load demonstrates the accuracy of the proposed general composite limit state approach.
Journal Article

An Efficient Method to Calculate the Failure Rate of Dynamic Systems with Random Parameters Using the Total Probability Theorem

Using the total probability theorem, we propose a method to calculate the failure rate of a linear vibratory system with random parameters excited by stationary Gaussian processes. The response of such a system is non-stationary because of the randomness of the input parameters. A space-filling design, such as optimal symmetric Latin hypercube sampling or maximin, is first used to sample the input parameter space. For each design point, the output process is stationary and Gaussian. We present two approaches to calculate the corresponding conditional probability of failure. A Kriging metamodel is then created between the input parameters and the output conditional probabilities allowing us to estimate the conditional probabilities for any set of input parameters. The total probability theorem is finally applied to calculate the time-dependent probability of failure and the failure rate of the dynamic system. The proposed method is demonstrated using a vibratory system.
Journal Article

A New Metamodeling Approach for Time-Dependent Reliability of Dynamic Systems with Random Parameters Excited by Input Random Processes

We propose a new metamodeling method to characterize the output (response) random process of a dynamic system with random parameters, excited by input random processes. The metamodel can be then used to efficiently estimate the time-dependent reliability of a dynamic system using analytical or simulation-based methods. The metamodel is constructed by decomposing the input random processes using principal components or wavelets and then using a few simulations to estimate the distributions of the decomposition coefficients. A similar decomposition is also performed on the output random process. A kriging model is then established between the input and output decomposition coefficients and subsequently used to quantify the output random process corresponding to a realization of the input random parameters and random processes. What distinguishes our approach from others in metamodeling is that the system input is not deterministic but random.