Refine Your Search

Search Results

Viewing 1 to 5 of 5
Technical Paper

Simulation of a Crankcase Scavenged, Two-Stroke, SI Engine and Comparisons with Experimental Data

1969-02-01
690135
A detailed mathematical model of the thermodynamic events of a crankcase scavenged, two-stroke, SI engine is described. The engine is divided into three thermodynamic systems: the cylinder gases, the crankcase gases, and the inlet system gases. Energy balances, mass continuity equations, the ideal gas law, and thermodynamic property relationships are combined to give a set of coupled ordinary differential equations which describe the thermodynamic states encountered by the systems of the engine during one cycle of operation. A computer program is used to integrate the equations, starting with estimated initial thermodynamic conditions and estimated metal surface temperatures. The program iterates the cycle, adjusting the initial estimates, until the final conditions agree with the beginning conditions, that is, until a cycle results.
Technical Paper

End-Gas Temperatures, Pressures, Reaction Rates, and Knock

1965-02-01
650505
The infrared radiation method of compression and end-gas temperature measurement was applied to the problem of measuring gas temperatures up to the time of knock. Pressure data were taken for each run on a CFR engine with mixtures of isooctane and n-heptane under both knocking and nonknocking conditions. Main engine parameters studied were the intake pressure, intake temperature, and engine speed. The rate and extent of chemical energy release were calculated from the temperature and pressure histories using an energy balance. The computed rates of chemical energy release were correlated to a chain-type kinetic model
Technical Paper

A Resistance Thermometer for Engine Compression Temperatures

1963-01-01
630128
Fine-wire resistance thermometers were used to measure compression gas temperatures in a motoring (nonfiring) cycle CFR engine. Temperature versus crankangle curves were obtained for the compression and expansion strokes by means of tungsten wires ranging in diameter from 0.15–1.00 mils and at speeds from 600–1800 rpm. The results were compared with the infrared pyrometer; the peak temperature and peak crankangle lags were determined as a function of the wire diameter and engine speed. Attempts to evaluate the instantaneous energy balance around the wire resulted in a negative heat transfer coefficient, for which no current satisfactory explanation is available, although other observers have reported similar phenomena. The tungsten resistance thermometer is simple to build, easy to install, and requires no modification of the engine block for use during motoring. Thus, it is suitable for comparing the compression temperatures of different design engines.
Technical Paper

Physical and Chemical Ignition Delay in an operating diesel engine using the hot-motored technique—part II

1960-01-01
600057
THE PRESENT WORK uses both the hot-motored technique and a nitrogen technique to obtain three pressure-time records — one without either vaporization or chemical reaction, one with vaporization only, and one with both vaporization and chemical reaction. By comparison of these three records, rates of vaporization and rates of chemical reaction can be determined during the ignition delay period in an operating diesel engine. Such data are shown for different fuels and operating conditions. Estimations are made of the penetration and temperatures existing in the spray.*
Technical Paper

Temperature-Strength-Time Relationships in Mufflers and for Truck Muffler Materials

1957-01-01
570055
DATA presented in this paper show temperature-time diagrams obtained from mufflers mounted on trucks which were traveling over their regular routes. Using these temperature data, specimens made of possible muffler materials were subjected to laboratory tests. A wide range of possible muffler materials and gas composition were covered in these tests. Results of the tests indicate that under long-run heavy-duty truck service, muffler failure occurs primarily because of high metal temperatures and that coated mild steel showed the most promise of longer muffler life.
X