Refine Your Search

Topic

Search Results

Technical Paper

A Triangulated Lagrangian Ignition Kernel Model with Detailed Kinetics for Modeling Spark Ignition with the G-Equation-Part I: Geometric Aspects

2018-04-03
2018-01-0195
Modeling ignition kernel development in spark ignition engines is crucial to capturing the sources of cyclic variability, both with RANS and LES simulations. Appropriate kernel modeling must ensure that energy transfer from the electrodes to the gas phase has the correct timing, rate and locations, until the flame surface is large enough to be represented on the mesh by the G-Equation level-set method. However, in most kernel models, geometric details driving kernel growth are missing: either because it is described as Lagrangian particles, or because its development is simplified, i.e., down to multiple spherical flames. This paper covers the geometric aspects of kernel development, which makes up the core of a Triangulated Lagrangian Ignition Kernel model. One (or multiple, if it restrikes) spark channel is initialized as a one-dimensional Lagrangian particle thread.
Technical Paper

A Statistical Description of Knock Intensity and Its Prediction

2017-03-28
2017-01-0659
Cycle-to-cycle variation in combustion phasing and combustion rate cause knock to occur differently in every cycle. This is found to be true even if the end gas thermo-chemical time history is the same. Three cycles are shown that have matched combustion phasing, combustion rate, and time of knock onset, but have knock intensity that differs by a factor of six. Thus, the prediction of knock intensity must include a stochastic component. It is shown that there is a relationship between the maximum possible knock intensity and the unburned fuel energy at the time of knock onset. Further, for a small window of unburned energy at knock onset, the probability density function of knock intensity is self similar when scaled by the 95th percentile of the cumulative distribution, and log-normal in shape.
Technical Paper

Pressure-Based Knock Measurement Issues

2017-03-28
2017-01-0668
Highly time resolved measurements of cylinder pressure acquired simultaneously from three transducers were used to investigate the nature of knocking combustion and to identify biases that the pressure measurements induce. It was shown by investigating the magnitude squared coherence (MSC) between the transducer signals that frequency content above approximately 40 kHz does not originate from a common source, i.e., it originates from noise sources. The major source of noise at higher frequency is the natural frequency of the transducer that is excited by the impulsive knock event; even if the natural frequency is above the sampling frequency it can affect the measurements by aliasing. The MSC analysis suggests that 40 kHz is the appropriate cutoff frequency for low-pass filtering the pressure signal. Knowing this, one can isolate the knock event from noise more accurately.
Technical Paper

Comparative Small Engine Testing Using Hybrid Composite Cylinder Liners

2016-11-08
2016-32-0022
Cylinder liners exert a major influence on engine performance, reliability, durability and maintenance. Various combinations of nonmetallic reinforcements and coatings have been used to improve the tribological performance of sleeves or surfaces used in compressors and internal combustion engines in four stroke, two stroke and rotary configurations. In this paper we report the use of a hybrid composite containing silicon carbide and graphite in an aluminum alloy matrix to improve the performance of various small engines and compressors. Material properties of the base material, as well as comparative dynamometer testing, are presented.
Journal Article

The Development of an Ignition Delay Correlation for PRF Fuel Blends from PRF0 (n-Heptane) to PRF100 (iso-Octane)

2016-04-05
2016-01-0551
A correlation was developed to predict the ignition delay of PRF blends at a wide range of engine-relevant operating conditions. Constant volume simulations were performed using Cantera coupled with a reduced reaction mechanism at a range of initial temperatures from 570-1860K, initial pressures from 10-100atm, oxygen mole percent from 12.6% to 21%, equivalence ratios from 0.30-1.5, and PRF blends from PRF0 to PRF100. In total, 6,480 independent ignition delay simulations were performed. The correlation utilizes the traditional Arrhenius formulation; with equivalence ratio (φ), pressure (p), and oxygen mole percentage (xo2) dependencies. The exponents α, β, and γ were fitted to a third order polynomial with respect to temperature with an exponential roll-off to a constant value at low temperatures to capture the behavior expressed by the reaction mechanism. The location and rate of the roll-off functions were modified by linear functions of PRF.
Technical Paper

Load Identification of a Suspension Assembly Using True-Load Self Transducer Generation

2016-04-05
2016-01-0429
The performance of a structural design significantly depends upon the assumptions made on input load. In order to estimate the input load, during the design and development stage of the suspension assembly of a BAJA car, designers and analysts invest immense amount of time and effort to formulate the mathematical model of the design. These theoretical formulations may include idealization errors which can affect the performance of the car as a final product. Due to the errors associated with the assumption of design load, several components might have more weight or may have less strength than needed. This discrepancy between the assumed input load (lab or theoretical studies) and the actual load from the environment can be eliminated by performing a real life testing process using load recovery methodology. Commercial load cells exist in industry to give engineers insight to understanding the complex real world loading of their structures.
Journal Article

Improving the Understanding of Intake and Charge Effects for Increasing RCCI Engine Efficiency

2014-04-01
2014-01-1325
The present experimental engine efficiency study explores the effects of intake pressure and temperature, and premixed and global equivalence ratios on gross thermal efficiency (GTE) using the reactivity controlled compression ignition (RCCI) combustion strategy. Experiments were conducted in a heavy-duty single-cylinder engine at constant net load (IMEPn) of 8.45 bar, 1300 rev/min engine speed, with 0% EGR, and a 50% mass fraction burned combustion phasing (CA50) of 0.5°CA ATDC. The engine was port fueled with E85 for the low reactivity fuel and direct injected with 3.5% 2-ethylhexyl nitrate (EHN) doped into 91 anti-knock index (AKI) gasoline for the high-reactivity fuel. The resulting reactivity of the enhanced fuel corresponds to an AKI of approximately 56 and a cetane number of approximately 28. The engine was operated with a wide range of intake pressures and temperatures, and the ratio of low- to high-reactivity fuel was adjusted to maintain a fixed speed-phasing-load condition.
Technical Paper

Variable Characteristic Permanent Magnet Motor for Automobile Application

2014-04-01
2014-01-1869
This paper describes a variable magnetomotive force interior permanent magnet (IPM) machine for use as a traction motor on automobiles in order to reduce total energy consumption during duty cycles and cut costs by using Dy-free magnets. First, the principle of a variable magnetomotive force flux-intensifying IPM (VFI-IPM) machine is explained. A theoretical operating point analysis of the magnets using a simplified model with nonlinear B-H characteristics is presented and the results are confirmed by nonlinear finite element analysis. Four types of magnet layouts were investigated for the magnetic circuit design. It was found that a radial magnetization direction with a single magnet is suitable for the VFI-IPM machine. Magnetization controllability was investigated with respect to the magnet thickness, width and coercive force for the prototype design. The estimated variable motor speed and torque characteristics are presented.
Technical Paper

Modeling Investigation of Auto-ignition and Engine Knock by HO2

2014-04-01
2014-01-1221
Knock in a Rotax-914 engine was modeled and investigated using an improved version of the KIVA-3V code with a G-equation combustion model, together with a reduced chemical kinetics model. The ERC-PRF mechanism with 47 species and 132 reactions [1] was adopted to model the end gas auto-ignition in front of the flame front. The model was validated by a Caterpillar SI engine and a Rotax-914 engine in different operating conditions. The simulation results agree well with available experimental results. A new engineering quantified knock criterion based on chemical mechanism was then proposed. Hydroperoxyl radical (HO2) shows obvious accumulation before auto-ignition and a sudden decrease after auto-ignition. These properties are considered to be a good capability for HO2 to investigate engine knock problems.
Technical Paper

Pressure-Swirl Atomization in the Near Field

1999-03-01
1999-01-0496
To model sprays from pressure-swirl atomizers, the connection between the injector and the downstream spray must be considered. A new model for pressure-swirl atomizers is presented which assumes little knowledge of the internal details of the injector, but instead uses available observations of external spray characteristics. First, a correlation for the exit velocity at the injector exit is used to define the liquid film thickness. Next, the film must be modeled as it becomes a thin, liquid sheet and breaks up, forming ligaments and droplets. A linearized instability analysis of the breakup of a viscous, liquid sheet is used as part of the spray boundary condition. The spray angle is estimated from spray photographs and patternator data. A mass averaged spray angle is calculated from the patternator data and used in some of the calculations.
Technical Paper

Modeling the Effects of Intake Flow Characteristics on Diesel Engine Combustion

1995-02-01
950282
The three-dimensional CFD codes KIVA-II and KIVA-3 have been used together to study the effects of intake generated in-cylinder flow structure on fuel-air mixing and combustion in a direct injected (DI) Diesel engine. In order to more accurately account for the effect of intake flow on in-cylinder processes, the KIVA-II code has been modified to allow for the use of data from other CFD codes as initial conditions. Simulation of the intake and compression strokes in a heavy-duty four-stroke DI Diesel engine has been carried out using KIVA-3. Flow quantities and thermodynamic field information were then mapped into a computational grid in KIVA-II for use in the study of mixing and combustion. A laminar and turbulent timescale combustion model, as well as advanced spray models, including wave breakup atomization, dynamic drop drag, and spray-wall interaction has been used in KIVA-II.
Technical Paper

Computer-Aided Design Methogology for Agricultural Implement Design

1992-09-01
921705
An overview of a design methodology based on finite element and fatigue analyses is described for the design of welded structures. Fatigue life is a primary design consideration for agricultural equipment structural members. The re-design of an agricultural implement frame and hitch assembly is used to illustrate the methodology for optimal design and improved fatigue life. A description of the finite element mode of the agricultural implement and the simulated loading history are described. Results from finite element analysis are used to optimize the frame member sizes and calculate the fatigue strength characteristics. This design analysis strategy provides improved fatigue life characteristics for the implement frame or welded structure.
Technical Paper

A Computer Program for Calculating Properties of Equilibrium Combustion Products with Some Applications to I.C. Engines

1975-02-01
750468
A computer program which rapidly calculates the equilibrium mole fractions and the partial derivatives of the mole fractions with respect to temperature, pressure and equivalence ratio for the products of combustion of any hydrocarbon fuel and air is described. A subroutine is also given which calculates the gas constant, enthalpy, internal energy and the partial derivatives of these with respect to temperature, pressure and equivalence ratio. Some examples of the uses of the programs are also given.
Technical Paper

Simulation of a Crankcase Scavenged, Two-Stroke, SI Engine and Comparisons with Experimental Data

1969-02-01
690135
A detailed mathematical model of the thermodynamic events of a crankcase scavenged, two-stroke, SI engine is described. The engine is divided into three thermodynamic systems: the cylinder gases, the crankcase gases, and the inlet system gases. Energy balances, mass continuity equations, the ideal gas law, and thermodynamic property relationships are combined to give a set of coupled ordinary differential equations which describe the thermodynamic states encountered by the systems of the engine during one cycle of operation. A computer program is used to integrate the equations, starting with estimated initial thermodynamic conditions and estimated metal surface temperatures. The program iterates the cycle, adjusting the initial estimates, until the final conditions agree with the beginning conditions, that is, until a cycle results.
Technical Paper

UV Absorbance Histories and Knock in a Spark Ignited Engine

1969-02-01
690519
Monochromatic ultraviolet (UV) absorbance, temperature, and pressure histories of unburned gas in a single cylinder CFR engine under motored, fired, and autoignition conditions were recorded on a multichannel magnetic tape recorder. Isooctane, cyclohexane, ethane, n-hexane, n-heptane, 75 octane number (ON), 50 ON, and 25 ON blends of primary reference fuels (PRF) were studied. Under knocking or autoignition conditions a critical absorbance at 2600 A was found, whose magnitude was independent of engine operating variables and dependent only on the knock resistance of the fuel. This absorbance increased rapidly when a certain temperature level was exceeded during the exothermic preflame reactions.
Technical Paper

End-Gas Temperatures, Pressures, Reaction Rates, and Knock

1965-02-01
650505
The infrared radiation method of compression and end-gas temperature measurement was applied to the problem of measuring gas temperatures up to the time of knock. Pressure data were taken for each run on a CFR engine with mixtures of isooctane and n-heptane under both knocking and nonknocking conditions. Main engine parameters studied were the intake pressure, intake temperature, and engine speed. The rate and extent of chemical energy release were calculated from the temperature and pressure histories using an energy balance. The computed rates of chemical energy release were correlated to a chain-type kinetic model
Technical Paper

Correlation of Vertical Acceleration and Human Comfort in a Passenger Car

1963-01-01
630314
This paper takes a step towards eliminating the automobile industry's dependence on “seat of the pants” ride analysis by investigating the correlation between vertical acceleration and passenger comfort. To do this, it first develops a relationship between accelerometer data and ride comfort on a controlled test surface, and then extends this relationship to actual road conditions. To illustrate the usefulness of this approach, a simple, typical problem in more detailed ride analysis is briefly considered.
Technical Paper

A Resistance Thermometer for Engine Compression Temperatures

1963-01-01
630128
Fine-wire resistance thermometers were used to measure compression gas temperatures in a motoring (nonfiring) cycle CFR engine. Temperature versus crankangle curves were obtained for the compression and expansion strokes by means of tungsten wires ranging in diameter from 0.15–1.00 mils and at speeds from 600–1800 rpm. The results were compared with the infrared pyrometer; the peak temperature and peak crankangle lags were determined as a function of the wire diameter and engine speed. Attempts to evaluate the instantaneous energy balance around the wire resulted in a negative heat transfer coefficient, for which no current satisfactory explanation is available, although other observers have reported similar phenomena. The tungsten resistance thermometer is simple to build, easy to install, and requires no modification of the engine block for use during motoring. Thus, it is suitable for comparing the compression temperatures of different design engines.
Technical Paper

The Self Ignition of Fuel Drops in Heated Air Streams

1962-01-01
620284
The results of both theoretical and experimental studies on the self-ignition of single pure hydrocarbon drops are described. In this work single drops were subjected to air streams heated to such degrees that self-ignition of the drops would occur. Experimental heat and mass transfer parameters, as well as ignition delay data for different fuels and at different operating conditions were obtained. The experimental data were then used in conjunction with boundary layer correlations to evaluate the extent of the ignition delay that is physical (vaporization) and chemical (molecular interaction).
X