Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Comparative Small Engine Testing Using Hybrid Composite Cylinder Liners

2016-11-08
2016-32-0022
Cylinder liners exert a major influence on engine performance, reliability, durability and maintenance. Various combinations of nonmetallic reinforcements and coatings have been used to improve the tribological performance of sleeves or surfaces used in compressors and internal combustion engines in four stroke, two stroke and rotary configurations. In this paper we report the use of a hybrid composite containing silicon carbide and graphite in an aluminum alloy matrix to improve the performance of various small engines and compressors. Material properties of the base material, as well as comparative dynamometer testing, are presented.
Technical Paper

Load Identification of a Suspension Assembly Using True-Load Self Transducer Generation

2016-04-05
2016-01-0429
The performance of a structural design significantly depends upon the assumptions made on input load. In order to estimate the input load, during the design and development stage of the suspension assembly of a BAJA car, designers and analysts invest immense amount of time and effort to formulate the mathematical model of the design. These theoretical formulations may include idealization errors which can affect the performance of the car as a final product. Due to the errors associated with the assumption of design load, several components might have more weight or may have less strength than needed. This discrepancy between the assumed input load (lab or theoretical studies) and the actual load from the environment can be eliminated by performing a real life testing process using load recovery methodology. Commercial load cells exist in industry to give engineers insight to understanding the complex real world loading of their structures.
Technical Paper

Computer-Aided Design Methogology for Agricultural Implement Design

1992-09-01
921705
An overview of a design methodology based on finite element and fatigue analyses is described for the design of welded structures. Fatigue life is a primary design consideration for agricultural equipment structural members. The re-design of an agricultural implement frame and hitch assembly is used to illustrate the methodology for optimal design and improved fatigue life. A description of the finite element mode of the agricultural implement and the simulated loading history are described. Results from finite element analysis are used to optimize the frame member sizes and calculate the fatigue strength characteristics. This design analysis strategy provides improved fatigue life characteristics for the implement frame or welded structure.
Technical Paper

Simulation of a Crankcase Scavenged, Two-Stroke, SI Engine and Comparisons with Experimental Data

1969-02-01
690135
A detailed mathematical model of the thermodynamic events of a crankcase scavenged, two-stroke, SI engine is described. The engine is divided into three thermodynamic systems: the cylinder gases, the crankcase gases, and the inlet system gases. Energy balances, mass continuity equations, the ideal gas law, and thermodynamic property relationships are combined to give a set of coupled ordinary differential equations which describe the thermodynamic states encountered by the systems of the engine during one cycle of operation. A computer program is used to integrate the equations, starting with estimated initial thermodynamic conditions and estimated metal surface temperatures. The program iterates the cycle, adjusting the initial estimates, until the final conditions agree with the beginning conditions, that is, until a cycle results.
X