Refine Your Search

Search Results

Viewing 1 to 9 of 9
Technical Paper

Mixture Preparation Effects on Ignition and Combustion in a Direct-Injection Spark-Ignition Engine

1996-10-01
962013
Planar instantaneous fuel concentration measurements were made by laser-induced fluorescence of 3-pentanone in the spark gap just prior to ignition in a direct-injection spark-ignition engine operating at a light load, highly stratified condition. The distribution of the average equivalence ratio in a circle of 1.9 mm diameter centered on the spark plug showed that a large fraction of the cycles had an equivalence ratio below the lean limit, yet acceptable combustion was achieved in those cycles. Further, weak correlation was found between the local average equivalence ratio near the spark plug and the time required to achieved a 100 kPa pressure rise above the motoring pressure, as well as other parameters which characterize the early stages of combustion. The cause for this behavior is assessed to be mixture motion during the spark discharge which continually convects fresh mixture through the spark gap during breakdown.
Technical Paper

Comparisons of Computed and Measured Hollow-Cone Sprays in an Engine

1995-02-01
950284
A second effort is reported to reproduce the distribution of fuel from a pulsating hollow-cone liquid-only poppet injector measured by the planar exciplex technique within the head cup of a motored ported single-cylinder engine operated at 1600 rpm with high swirl and a squish ratio of 75%. The injector, cup and cylinder were coaxial. The engine flowfield without injection had previously been characterized by LDV and PIV and so had been the injector and its spray in constant pressure environments. In a previous effort, the injector was assume to generate drop and the computed collapse of the spray was found to be too slow. In this work, the injector is assumed to generate liquid sheets that change shape and produce drops from their leading edges and surfaces as they propagate through the gas.
Technical Paper

Fuel Distribution Effects on the Combustion of a Direct-injection Stratified-Charge Engine

1995-02-01
950460
Simultaneous fuel distribution images (by shadowgraph and laser-induced fluorescence) and cylinder pressure measurements are reported for a combusting stratified-charge engine with a square cup in the head at 800 RPM and light load for two spark locations with and without swirl. Air-assisted direct-injection occurred from 130°-150° after bottom dead center (ABDC) and ignition was at 148° ABDC. The engine is ported and injection and combustion take place every 6th cycle. The complicated interaction of the squish, fuel/air jet, square cup, spark plug geometry and weak tumble gives rise to a weak crossflow toward the intake side of the engine with no swirl, but toward the exhaust side in the presence of strong swirl, skewing the spray slightly to that side.
Technical Paper

Investigation of the Fuel Distribution in a Two-Stroke Engine with an Air-Assisted Injector

1994-03-01
940394
Results of experiments performed on a direct-injection two-stroke engine using an air-assisted injector are presented. Pressure measurements in both the engine cylinder and injector body coupled with backlit photographs of the spray provide a qualitative understanding of the spray dynamics from the oscillating poppet system. The temporal evolution of the spatial distribution of both liquid and vapor fuel were measured within the cylinder using the Exciplex technique with a new dopant which is suitable for tracing gasoline. However, a temperature dependence of the vapor phase fluorescence was found that limits the direct quantitative interpretation of the images. Investigation of a number of realizations of the vapor field at a time typical of ignition for a stratified-charge engine shows a high degree of cycle to cycle variability with some cycles exhibiting a high level of charge stratification.
Technical Paper

Initial Comparisons of Computed and Measured Hollow-Cone Sprays in an Engine

1994-03-01
940398
Efforts are reported to reproduce the distribution of liquid and vapor fuel from a pulsating hollow-cone liquid-only injector measured by the planar exciplex technique within the head cup of a motored ported single-cylinder engine operated at 1600 rpm with high swirl and a squish ratio of 75%. The injector, cup and cylinder were coaxial. The measurements show that shortly after the beginning of the injection the maximum liquid and vapor fuel concentrations are along the axis but also that the spray achieves substantial radial and axial penetrations. The engine flowfield without injection had previously been characterized by LDV and PIV and so had been the injector and its spray in constant pressure environments so that little arbitrariness was left in reproducing the spray in the engine. Two spray models were used. In one the large drops produced by the break up of the liquid sheet were introduced into the numerical field at the injector exit nearly with the poppet seat angle.
Technical Paper

Combustion Optimization Computations-Part I: Swirl and Squish Effects in Air-Assist Injection Engines

1992-10-01
922240
Results are presented of two-dimensional computations of air-assist fuel injection into engines with bowl-in-piston and bowl-in-head, with and without swirl and for early and late injection but without combustion. The general finding is that swirl tends to destroy the head vortex of the air/fuel jet and results in a faster collapse of the spray cone toward its axis. Faster collapse is also promoted by high density of the chamber gas (e.g. late injection) and bowl-in-head design (limited availability of chamber gas around the spray, presence of walls and delayed influence of squish by the injector). With enhanced collapse, fuel-rich regions are formed around the axis and away from the injector. With reduced collapse, the radial distribution of the fuel is more uniform. Thus swirl tends to lead to both slower vaporization and richer vapor mixtures. Also, with strong swirl the rich mixtures tend to end up by the injector; without swirl, by the piston.
Technical Paper

Computation of the Spray from an Air-Assisted Fuel Injector

1990-10-01
902079
Comparisons are discussed of computed and measured transient sprays from an air-assisted fuel injector. Although the measurements were extensive, they did not characterize fully the conditions at the nozzle exit which had to be obtained from a simple model of the flow within the injector. It is found that spray width, spray tip penetration, amount of spray found in the head vortex, and chamber fuel distribution are strong functions of the internal design of the fuel injector. Particularly important are the drop size distribution and the direction of the flow at the exit of the nozzle.
Technical Paper

3-D Computations to Improve Combustion in a stratified-Charge Rotary Engine Part II: A Better Spray Pattern for the Pilot Injector

1989-09-01
892057
A three-dimensional combustion model of a direct-injection stratified-charge rotary engine is used to identify modifications that might lead to better indicated efficiency. The engine, which has a five-hole main injector and a pilot injector, is predicted to achieve better indicated efficiency if a two-hole ‘rabbit-ear’ pilot injector is used instead of its present single-hole pilot injector. This rabbit-ear arrangement is predicted to increase the surface area of the early flame (on account of better distribution of the fuel), and thereby result in an increased overall burning rate. Computations were made at high and low engine speeds and loads, encompassing the practical operating range. It is concluded that the modified pilot injector will increase indicated efficiency by about 5% within the computed operating range.
Technical Paper

Two-Dimensional Visualization of Premixed-Charge Flame Structure in an IC Engine - SP-715

1987-02-01
870454
Flame fronts were examined in a premixed-charge, spark-ignition, ported engine using a two-dimensional visualization technique with 10 nanoseconds time resolution and 200 microns best spatial resolution. The engine had a pancake chamber, a compression ratio of 8, a TDC swirl number of 4 and was operated at 300 to 3000 rpm with stoichiometric and lean propane/air mixtures. The measurements were made far from, and near to, the cylinder wall. A pulsed laser sheet was passed through the engine and the light scattered by sub-micron TiO2 or ZrO2 seeding particles was collected by a 100 x 100 diode array with fields of view of 1 cm x 1 cm, 2 cm x 2 cm, and 9 cm x 9 cm. The thickness of the flame front is as small as, or smaller than, the 200 micron best resolution of the measurements thus confirming that premixed-charge engine turbulent flames generally appear to be wrinkled laminar flames.
X