Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Chemical Kinetics Based Equations for Ignition Delay Times of Primary Reference Fuels Dependent on Fuel, O2 and Third Body Concentrations and Heat Capacity

2015-09-01
2015-01-1810
The ignition delay times of n-C7H16, i-C8H18, and a blend of them at different fuel, O2 and N2 concentrations were computed using a detailed chemical kinetic mechanism generated by KUCRS. For each fuel, the dependences of ignition delay time on fuel, O2 and third body concentrations and on the heat capacity of a mixture were distilled to establish a power law equation for ignition delay time. For n-C7H16, ignition delay time τhigh without low-temperature oxidation at a high initial temperature between 1000 K and 1200 K was expressed using the scaling exponents for fuel, O2 and third body concentrations and heat capacity of 0.54, 0.29, 0.08, and - 0.38, respectively. Low-temperature oxidation induction time τ1 at a low initial temperature between 600 K and 700 K was expressed using the scaling exponents for fuel, O2 and third body concentrations and heat capacity of 0.03, 0.18, 0.04, and - 0.17, respectively.
Technical Paper

Classification of the Reactivity of Alkylperoxy Radicals by Using a Steady-State Analysis

2015-09-01
2015-01-1811
To execute the computational fluid dynamics coupling with fuel chemistry in internal combustion engines, simplified chemical kinetic models which capture the low-temperature oxidation kinetics would be required. A steady-state analysis was applied to see the complicated reaction mechanism of alkylperoxy radicals by assuming the steady state for hydroperoxyalkyl (QOOH) and hydroperoxyalkylperoxy (OOQOOH) radicals. This analysis clearly shows the systematic trend of the reaction rate for the chain-branching and non-branching process of alkylperoxy (ROO) radicals as a function of the chain length and the carbon class. These trends make it possible to classify alkylperoxy radicals by their chemical structures, and suggest a reduced low-temperature oxidation chemistry.
Technical Paper

Heat Release Rate and Cylinder Gas Pressure Oscillation in Low and High Speed Knock

2015-09-01
2015-01-1880
One of the authors has proposed to use the decay rate of EHRR, the effective heat release rate, d2Q/dθ2 as an index for the rapid local combustion [1]. In this study, EHRR profiles and the cylinder gas pressure oscillations of the low and high speed knock are analyzed by using this index. A delayed rapid local combustion, such as an autoignition with small burned mass fraction can be detected. In the cases of the low speed knock, it has been agreed that a rapid local combustion is an autoignition. Although whether the cylinder gas oscillation is provoked by an auto ignition in a certain cycle or not is an irregular phenomenon, the auto ignition takes place in almost all of the cycles in the knocking condition. Mixture mass fraction burned by an auto ignition is large. A small auto ignition may induce a secondary auto ignition, in many cases, mass burned by the secondary auto ignition is extremely large.
Technical Paper

Reaction Zone Propagation by Spark Discharge in Homogeneous Lean Charge after Low-Temperature Oxidation

2015-04-14
2015-01-0820
The interaction between spark discharge and low-temperature oxidation (LTO) was investigated using an optical compression and expansion machine fueled with n-C7H16 or i-C8H18 for an equivalence ratio of 0.33. Charge pressure was adjusted so that the compression stoke could induce LTO for n-C7H16, but could not lead to high-temperature reactions. A spark was discharged in the field before, during, or after the LTO for n-C7H16 or in the field without LTO for i-C8H18. Reaction zones were induced in the field after the LTO, whereas no reaction zones were induced in the fields before the LTO and without LTO. Local ignitions were induced in the areas surrounding the propagating reaction zones. The reaction zone propagation with the low equivalence ratio must be a different phenomenon from conventional flame propagation. The reaction zones can compress or heat the surrounding areas containing H2O2 and CH2O, and accelerate an H2O2 regeneration loop in the pre-reaction zones.
Technical Paper

Factors Determining the Octane Number of Alkanes

2014-04-01
2014-01-1227
The relationships between the octane number and the carbon atom number and the molecular structure of alkanes were comprehensively analyzed by using the detailed kinetic model generated by there automatic reaction scheme generation tool, KUCRS [1, 2]. The octane number is an index showing the ignition delay in the engine temperature regime, that is, the engine ignition temperature range. The high octane number is observed in the following two cases; 1 The ignition delay of the low temperature region is large. 2 The ignition delay of the low temperature region is the same, but the transition temperature for NTC (Negative Temperature Coefficient) region is low.
Journal Article

Chemical Kinetics Study on Two-Stage Main Heat Release in Ignition Process of Highly Diluted Mixtures

2013-04-08
2013-01-1657
Some experimental data indicate that an HCCI process of a highly diluted mixture is characterized with a two-stage profile of heat release after the heat release by low-temperature oxidation, and with slow CO oxidation into CO₂ at a low temperature. In the present paper, these characteristics are discussed using a detailed chemical kinetic model of normal heptane, and based on an authors' idea that an ignition process can be divided into five phases. The H₂O₂ loop reactions mainly contribute to heat release in a low-temperature region of the TI (thermal ignition) preparation phase. However, H+O₂+M=HO₂+M becomes the main contributor to heat release in a high-temperature region of the TI preparation phase. H₂O₂ is accumulated during the LTO (low-temperature oxidation) and NTC (negative temperature oxidation) phases, and drives the H₂O₂ loop reactions to increase the temperature during the TI preparation phase.
Technical Paper

Chemical Kinetics Study on Effect of Pressure and Fuel, O2 and N2 Molar Concentrations on Hydrocarbon Ignition Process

2012-04-16
2012-01-1113
Ignition process chemistry was analyzed using a detailed chemical kinetic model of n-heptane generated by KUCRS (Knowledge-basing Utilities for Complex Reaction Systems), wherein pressure-dependent rate constants of the O₂ addition to alkyl radicals and hydroperoxy alkyl radicals and the thermal decomposition of ketohydroperoxides have been introduced. Then, the effect of the initial pressure and the individual effects of the initial fuel, O₂ and N₂ molar concentrations on a relationship between the initial temperature and the ignition delay were discussed. When the initial temperature increases, the branch of C₇H₁₄OOH removal into the second O₂ addition and the decomposition into C₇H₁₄cyO and OH is more sensitive to the pressure and the O₂ concentration, and thus, the LTO preparation phase is more affected by the pressure and the O₂ concentration. The LTO phase terminates mainly by the OH removal by intermediate species.
Technical Paper

Lumped Chemical Kinetic Model Based on the Detailed Analysis of Hydrocarbon Fuel Ignition

2011-08-30
2011-01-1782
A systematic chemical lumping method has been proposed, based on the detailed kinetic analysis of hydrocarbon fuel ignitions. The model constructed by using this method contains two reaction sets, RO2 and fragment reaction package. The ignition characteristics of each fuel can be reflected by only adjusting several rate parameters in RO2 reaction package. From the comparison with detailed model, it was confirmed that this simplified model well reproduces the results of detailed one without missing the kinetics of hydrocarbon ignitions. We concluded that this new lumping approach has the possibility to be applicable to every hydrocarbon fuels.
Technical Paper

Chemical Kinetics Study on Ignition Characteristics of Biodiesel Surrogates

2011-08-30
2011-01-1926
Methyl butanoate (MB) and methyl decanoate (MD) are surrogates for biodiesel fuels. According to computational results with their detailed reaction mechanisms, MB and MD indicate shorter ignition delays than long alkanes such as n-heptane and n-dodecane do at an initial temperature over 1000 K. The high ignitability of these methyl esters was computationally analyzed by means of contribution matrices proposed by some of the authors. Due to the high acidity of an α-H atom in a carbonyl compound, hydroperoxy radicals are generated out of the equilibrium between forward and backward reactions of O₂ addition to methyl ester radicals by the internal transfer of an α-H atom in the initial stage of an ignition process. Some of the hydroperoxy methyl ester radicals can generate OH to activate initial reactions. MB has an efficient CH₃O formation path via CH₃ generated by the β-scission of an MB radical which has a radical site on the α-C atom to the carbonyl group.
Technical Paper

Universal Rule of Hydrocarbon Oxidation

2009-04-20
2009-01-0948
Hydrocarbon thermal ignition in internal combustion engines is controlled by the balance of heat release rate by chemical reactions and internal energy formation or removal rate by adiabatic compression or expansion. Heat release rate can be described by a simple “Universal Rule”, that the heat release rate during the thermal ignition preparation period is determined by H2O2 loop composed of four elementary reactions. This rule was validated by sensitivity analysis and response analysis to perturbation of intermediate species concentrations. The rule was applied to clarify several subjects with experimental backgrounds, such as ignition characteristics of higher octane number fuels, an old and well-known knocking model and the influence of H2 addition.
Technical Paper

Development of the NOx Adsorber Catalyst for Use with High-Temperature Condition

2001-03-05
2001-01-1298
NOx adsorber has already been used for the after-treatment system of series production vehicle installed with a lean burn or direct injection engine [1,2,3]. In order to improve NOx adsorbability at high temperatures, many researchers have recently been trying an addition of potassium (K) as well as other conventional NOx adsorbents. Potassium, however, reacts easily with the cordierite honeycomb substrate at high temperatures, and not only causes a loss in NOx adsorbability but also damages the substrate. Three new technologies have been proposed in consideration of the above circumstances. First, a new concept of K-capture is applied in washcoat design, mixed with zeolite, to improve thermal stability of K and to keep high NOx conversion efficiency, under high temperatures, of NOx adsorber catalyst. Second, another new technology, pre-coating silica over the boundary of a substrate and washcoat, is proposed to prevent the reaction between potassium and cordierite.
X