Refine Your Search

Topic

Search Results

Technical Paper

Numerical Study on the Combustion Characteristics of an Ammonia/Hydrogen Engine with Active Prechamber Ignition

2024-04-09
2024-01-2104
Both ammonia and hydrogen, as zero-carbon fuels for internal combustion engines, are received growing attention. However, ammonia faces a challenge of low flame propagation velocity. Through injecting hydrogen into active pre-chamber, its jet flame ignition can accelerate the flame propagation velocity of ammonia. The influence of different pre-chamber structures on engine combustion characteristics is significant. In this paper, numerical studies were conducted to assess the impact of various pre-chamber structures and hydrogen injection strategy on the combustion characteristics of ammonia/hydrogen engines while maintaining the equivalent ratio of 1.0. The results indicate that the jet angle significantly affects the position of jet flame and the followed main combustion. The in-cylinder combustion pressure peaks at jet angle of 150°. Meanwhile, the combustion duration of 150° is shortened by 74.3% compared with that of 60°.
Technical Paper

Combustion and HC&PN Emission Characteristics at First Cycle Starting of Gasoline Engine under Lean Burn Based on Active Pre-Chamber

2024-04-09
2024-01-2108
As a novel ignition technology, pre-chamber ignition can enhance ignition energy, promote flame propagation, and augment turbulence. However, this technology undoubtedly faces challenges, particularly in the context of emission regulations. Of this study, the transient characteristics of combustion and emissions in a hybrid electric vehicle (HEV) gasoline engine with active pre-chamber ignition (PCI) under the first combustion cycle of quick start are focused. The results demonstrate that the PCI engine is available on the first cycle for lean combustion, such as lambda 1.6 to 2.0, and exhibit particle number (PN) below 7×107 N/mL at the first cycle. These particles are predominantly composed of nucleation mode (NM, <50 nm) particles, with minimal accumulation mode (AM, >50 nm) particles.
Technical Paper

Effect of Port Water Injection on the Knock and Combustion Characteristics for an Argon Power Cycle Hydrogen Engine

2024-04-09
2024-01-2612
Argon power cycle hydrogen engine is an internal combustion engine that employs argon instead of nitrogen of air as the working fluid, oxygen as the oxidizer, and hydrogen as the fuel. Since argon has a higher specific heat ratio than air, argon power cycle hydrogen engines have theoretically higher indicated thermal efficiencies according to the Otto cycle efficiency formula. However, argon makes the end mixture more susceptible to spontaneous combustion and thus is accompanied by a stronger knock at a lower compression ratio, thus limiting the improvement of thermal efficiency in engine operation. In order to suppress the limitation of knock on the thermal efficiency, this paper adopts a combination of experimental and simulation methods to investigate the effects of port water injection on the knock suppression and combustion characteristics of an argon power cycle hydrogen engine.
Technical Paper

Efficiency Enhancement and Lean Combustion Performance Improvement by Argon Power Cycle in a Methane Direct Injection Engine

2023-10-31
2023-01-1618
Argon Power Cycle (APC) is an innovative future potential power system for high efficiency and zero emissions, which employs an Ar-O2 mixture rather than air as the working substance. However, APC hydrogen engines face the challenge of knock suppression. Compared to hydrogen, methane has a better anti-knock capacity and thus is an excellent potential fuel for APC engines. In previous studies, the methane is injected into the intake port. Nevertheless, for lean combustion, the stratified in-cylinder mixture formed by methane direct injection has superior combustion performances. Therefore, based on a methane direct injection engine at compression ratio = 9.6 and 1000 r/min, this study experimentally investigates the effects of replacing air by an Ar-O2 mixture (79%Ar+21%O2) on thermal efficiencies, loads, and other combustion characteristics under different excess oxygen ratios. Meanwhile, the influences of varying the methane injection timing are studied.
Technical Paper

Combustion and Emission Characteristics of Ammonia Jet Flames, Based on a Controllable Activated Thermal Atmosphere

2023-10-31
2023-01-1645
Ammonia is a new type of carbon-free fuel with low cost, clean and safe. The research and application of zero-carbon fuel internal combustion engines has become the mainstream of future development. However, there still exist problems should be solved in the application of ammonia fuel. Due to the lower flame laminar speed and higher ignition temperature, ammonia may have unstable combustion phenomena. In this work, the characteristics of ammonia combustion have been investigated, based on controllable thermal activated atmosphere burner. The ignition delay has been used to analyze the ammonia combustion characteristics. With the increase in co-flow temperature, the ignition delay of ammonia/air has an obvious decline. In order to investigate the emission characteristics of ammonia, CHEMKIN is used to validate the different chemical reaction mechanisms and analyse the ammonia emissions.
Technical Paper

Numerical Investigations on Formation Process of N2O in Ammonia/Hydrogen Fueled Pre-Chamber Jet Ignition Engine

2023-10-30
2023-01-7023
Ammonia is used as the carbon-free fuel in the engine, which is consistent with the requirements of the current national dual-carbon policy. However, the great amount of NOx in the exhaust emissions is produced after combustion of ammonia and is one kind of the most tightly controlled pollutants in the emission regulation. Nitrous Oxide (N2O) is a greenhouse gas with a very strong greenhouse effect, so that the N2O emissions needs to be paid close attention. In this paper, the CFD simulation of the N2O formation and emission characteristics during combustion is carried in the ammonia/hydrogen fueled pre-chamber jet ignition engine.
Technical Paper

Simulation Study on the Effect of In-Cylinder Water Injection Mass on Engine Combustion and Emissions Characteristics

2023-10-30
2023-01-7004
The rapid development of the automobile industry has brought energy and environmental issues that scholars are increasingly concerning about. Improving efficiency and reducing emissions are currently two hot topics in the internal combustion engine industry. Direct water injection technology (DWI) can effectively reduce the cylinder temperature, which is due to the absorption of the heat by the injecting liquid water. In addition, lower temperature in the cylinder will reduce the formation of NO. In this paper, a CFD simulation of DWI application in a lean-burning single-cylinder engine with pre-chamber jet ignition was carried out. And the engine was experimentally tested for the simulation model validation. And then the effect of DWI strategy with different injecting water mass on the combustion and emissions characteristics are analyzed. Physically, injected water not only absorbs heat but also provides heat insulation.
Technical Paper

Simulation of charged species flow and ion current detection for knock sensing in gasoline engines with active pre-chamber

2023-09-29
2023-32-0005
Recently, it has been wildly recognized that active pre- chamber has a significant effect on extending the lean burn limit of gasoline engines. Ion current signals in the combustion is also considered as a promising approach to the engine knock detection. In this study, the feasibility of employing ion current in an active pre- chamber for combustion diagnosis was analyzed by three-dimensional numerical simulation on a single- cylinder engine equipped with active pre-chamber. The flow characteristics of charged species (NO+, H3O+ and electrons) in the main chamber and pre-chamber under knock conditions are investigated at different engine speeds, intake pressures and ignition timings. The results show that the ion current can theoretically be used for the knock detection of the active pre- chamber. The peak value of the electron or H3O+ mass fraction caused by knocking backflow can be used as knock indication peak.
Technical Paper

Knock Inhibition in Hydrogen Fueled Argon Power Cycle Engine with a Higher Compression Ratio by Water Direct Injection at Late Exhaust Stroke

2023-04-11
2023-01-0227
Hydrogen-fueled Argon Power Cycle engine is a novel concept for high efficiency and zero emissions, which replaces air with argon/oxygen mixtures as working fluid. However, one major challenge is severe knock caused by elevated in-cylinder temperature resulting from high specific heat ratio of Argon. A typical knock-limited compression ratio is around 5.5:1, which limits the thermal efficiency of Argon Power Cycle engines. In this article, preliminary experimental research on the effect of water direct injection at late exhaust stroke is presented at 1000 r/min with IMEP ranging from 0.3~0.6 MPa. Results show that, with temperature-reducing effect of water evaporation, knock is greatly inhibited and the engine can run normally at a higher compression ratio of 9.6:1. Water injected at the exhaust stroke minimizes its reducing effect on the specific heat ratio of the working fluid during the compression and expansion strokes.
Technical Paper

Thermodynamic and Chemical Analysis of the Effect of Working Substances on the Argon Power Cycle

2021-04-06
2021-01-0447
The Argon Power Cycle engine is a novel concept for high efficiency and zero emission through the replacement of N2 by Ar. However, the higher in-cylinder temperature and pressure as by-products cause heavier knock. The anti-knock strategies, such as reducing compression ratio and retarding ignition time, offset the efficiency increased by the Argon Power Cycle. Therefore, knock control becomes the most urgent task for the Argon Power Cycle engine development. The anti-knock methods, including fuel replacement, ultra-lean combustion, high dilution combustion, and water injection, were considered. The simulated ignition delay times were used to evaluate the probability of knock. The Otto cycle, combined with chemical equilibrium, was utilized to confirm the effect on the thermal conversion efficiency and each in-cylinder thermodynamic state parameter. The results show that the ignition delay times increase by a factor of two when the Ar dilution ratio increases from 79% to 95%.
Technical Paper

Characteristics of Auto-Ignition for Lubricants and Lubricant/Gasoline Based on an Innovative Single Droplet Test System

2020-04-14
2020-01-1428
Due to the advantages of low weight, low emissions and good fuel economy, downsized turbocharged gasoline direct injection (GDI) engines are widely-applied nowadays. However, Low-Speed Pre-Ignition (LSPI) phenomenon observed in these engines restricts their improvement of performance. Some researchers have shown that auto-ignition of lubricant in the combustion chamber has a great effect on the LSPI frequency. To study the auto-ignition characteristics of lubricant, an innovative single droplet auto-ignition test system for lubricant and its mixture is designed and developed, with better accuracy and effectiveness. The experiments are carried out by hanging lubricant droplets on the thermocouple node under active thermo-atmosphere provided by a small “Dibble burner”. The auto-ignition process of lubricant droplets is recorded by a high-speed camera.
Technical Paper

Combined Technologies for Efficiency Improvement on a 1.0 L Turbocharged GDI Engine

2019-04-02
2019-01-0233
The CO2 reduction request for automotive industry promotes the efforts on the engine thermal efficiency improvement. The goal of this research is to improve the thermal efficiency on an extremely downsized 3-cylinder 1.0 L turbocharged gasoline direct injection engine. Effects of compression ratio, exhaust gas recirculation (EGR), valve timing and viscosity of oil on fuel economy were studied. The results show that increasing compression ratio, from 9.6 to 12, can improve fuel economy at relative low load (below 12 bar BMEP), but has a negative effect at high load due to increased knock intensity. EGR can significantly reduce the pumping loss at low load, optimize combustion phase and reduce exhaust gas temperature. Therefore, the fuel consumption is reduced at all test points. The average brake thermal efficiency (BTE) benefit percentage is 3.47% with 9.6 compression ratio and 5.33 % with 12 compression ratio.
Technical Paper

Numerical Study of Intake Manifold Water Injection on Characteristics of Combustion and Emissions in a Heavy-Duty Natural Gas Engine

2019-04-02
2019-01-0562
The performances of heavy-duty natural gas engines have been limited by combustion temperature and NOx emissions for a long time. Recently, water injection technology has been widely considered as a technical solution in reducing fuel consumption and emissions simultaneously in both gasoline and diesel engines. This paper focuses on the impacts of intake manifold water injection on characteristics of combustion and emissions in a natural gas heavy-duty engine through numerical methods. A computational model was setup and validated with experimental data of pressure traces in a CFD software coupled with detailed chemical kinetics. The simulation was mainly carried out in low-speed and full-load conditions, and knock level was also measured and calculated by maximum amplitude of pressure oscillations (MAPO).
Technical Paper

A Study on the Combustion Characteristics of a Methane Jet Flame in a Pressurized Hot Vitiated Co-flow

2019-01-15
2019-01-0082
This work presents the study of the methane jet flame in a pressurized vitiated co-flow burner (PVCB). The lift-off length and the stabilization of the methane jet flame under different environment pressures, co-flow temperatures, co-flow rates and jet velocities have been studied, and a chemical numerical simulation based on Gri-mech 3.0 was analyzed as well. The results could provide theoretical supports for the research of natural gas engine combustion stabilization control to increase its thermal efficiency. The experimental results show that the lift-off length decreases obviously (104.22mm to76.14mm) with the increase of the environment pressure (1to1.5bar, 1073K) and temperature (119.34mm to 43.74mm from 1058K to 1118K, 1bar), meanwhile, it also increases with the increment of the co-flow rate and jet velocity.
Technical Paper

Auto-ignition Characteristics of Lubricant Droplets under Hot Co-Flow Atmosphere

2018-09-10
2018-01-1807
It has been revealed by researches that lubricant properties have a great effect on the low-speed pre-ignition (LSPI) frequency in downsizing turbocharged direct-injection engines which are developed for better fuel economy. Droplets of lubricant or lubricant-gasoline mixture are considered to be the potential pre-ignition sources. Those droplets fly into the combustion chamber and ignite the gasoline-air mixture. To study lubricant droplets fundamentally, a novel set of droplet auto-ignition system is designed based on a Dibble Burner for this experiment. Influences of metallic additive contents, viscosities, lubricant diluted with gasoline and waste lubricant on the ignition delay of droplets are investigated by testing 12 groups of lubricants or lubricant-gasoline mixture. The equivalent diameter of each droplet generated by micro-syringes is around 2.1 mm. The co-flow temperature varies from 1123 K to 1223 K, and the experiments are carried out at atmospheric pressure.
Technical Paper

Simulation of Intake Manifold Water Injection in a Heavy Duty Natural Gas Engine for Performance and Emissions Enhancement

2018-09-10
2018-01-1653
The present work discusses the effects of intake manifold water injection in a six-cylinder heavy duty natural gas (NG) engine through one-dimensional simulation. The numerical study was carried out based on GT-Power under different engine working conditions. The established simulation model was firstly calibrated in detail through the whole engine speed sweep under full load conditions before the model of intake manifold water injector was involved, and the calibration was based on experimental data. The intake manifold water injection mass was controlled through adjustment of intake water/gas (water/natural gas) ratio, a water/gas ratio swept from 0 to 4 was selected to investigate the effects of intake manifold water injection on engine performance and emissions characteristics. On the other hand, the enhancement potential of intake manifold water injection in heavy duty NG engine under lean and stoichiometric condition was also investigated by the alteration of air-fuel ratio.
Journal Article

Simulation Study of Water Injection Strategy in Improving Cycle Efficiency Based on a Novel Compression Ignition Oxy-Fuel Combustion Engine

2018-04-03
2018-01-0894
The present work discusses a novel oxy-fuel combustion cycle utilized in compression ignition internal combustion engine. The most prominent feature of this cycle is that the air intake is replaced by oxygen; therefore nitric oxide (NOX) emission is eliminated. The enrichment of oxygen leads to higher flame speed and mass fraction consumption rate; on the other hand, the high concentration of oxygen presented during combustion will result in intense pressure rise rate which may cause severe damage to engine hardware. As water injection is already utilized in gasoline engine to control knocking, the utilization of water injection in optimizing oxy-fuel combustion process has been tested in this study. To understand the relationship between water injection strategy and cycle efficiency, computational fluid dynamics (CFD) simulations were carried out. The model was carefully calibrated with the experimental results; the errors were controlled within 3%.
Technical Paper

Experimental and Numerical Study on Combustion Characteristics of Hydrogen-Argon Jet in a Hot Vitiated Co-flow

2018-04-03
2018-01-1139
This paper presents a study of the Hydrogen/Argon lifted flames in a hot vitiated co-flow. The effects of the dilution of argon in central fuel, the volume fraction of argon in the central fuel, co-flow temperature and the velocity of the central jet on the flame lift-off length were studied, and the numerical simulation with PDF model were analyzed as well. The results could provide theoretical supports for the research of the hydrogen fueled argon cycle engine which is a potential way not only to increase the indicated thermal efficiency of internal combustion engine but also realize the zero emission. The result shows that at the same boundary condition the central jet of H2+Ar has a lower lift-off length than the central jet of H2+N2. By the numerical simulation, the jet flame of H2+Ar has a higher maximum temperature and maximum OH concentration. It indicated that the dilution of argon could promote the combustion reaction.
Technical Paper

Effect of Direct Water Injection Timing on Common Rail Diesel Engine Combustion Process and Efficiency Enhancement

2017-10-08
2017-01-2281
The present work aims at optimizing diesel engine combustion efficiency with optimized water injection strategy. The engine had been modified based on a two-cylinder mechanical pump diesel engine into common rail diesel engine with capability of direct water injection. The direct water injection system was designed and manufactured independently. An air-fluid booster was utilized to establish the water injection pressure up to 40MPa. Customized diesel injector was selected to be used as water injector in this study. Water injection strategy was optimized in detail with injection timing around TDC which ranges from 12°CA BTDC to -5°CA BTDC under 10 bar IMEP. The engine efficiency can be improved under selected water injection strategy due to the increment of work fluid in the combustion chamber. Moreover, the nitric oxides emissions show decrement around 10%.
Technical Paper

Cyclic Variations of Argon Power Cycle Engine with Fuel of Hydrogen

2017-10-08
2017-01-2409
The work of this paper aimed at investigating the cyclic variations of argon power cycle engine with fuel of hydrogen at lean burn operating conditions. The engine had been modified based on a 0.402 L, single-cylinder diesel engine into spark ignition engine with a port fuel injection system. The influencing factors on the cyclic variations, such as ignition timing, engine speed and compression ratio, were tested in this study. In all tests, the throttle opened at 0%, and the excess oxygen coefficient was maintained at 2.3. The results showed that as the ignition timing retards, CoVPmax and CoV(dp/dφ)max of argon power cycle engine increased, while CoVIMEP decreased firstly and increased afterward. And there is an ignition timing to make the lowest CoVIMEP, which is not consistent with MBT.
X