Refine Your Search

Search Results

Viewing 1 to 11 of 11
Technical Paper

Feasibility Study on the Filter Design of Re-Crystallized SiC-GPF for TWC Coating Application

2015-04-14
2015-01-1011
The Particle Number (PN) emission limit is implemented for Direct Injection (DI) gasoline from EU6 regulation in European region. The wall-flow type ceramic filter technology is an essential component for Diesel PN emission control, and will be one potential solution to be investigated for the future Gasoline DI PN emission control demand. Especially the requirement of lower pressure loss with smaller filter volume is very strong for the filter substrate for Gasoline DI compared to DPF, not to lose better fuel economy benefit of Gasoline DI engine. Re-crystallized SiC (R-SiC) has high strength as its own property, and enable for Gasoline Particulate Filter (GPF) design to make the wall thickness thinner and the porosity higher compared to the other ceramic materials.
Technical Paper

Development of High Porosity SiC-DPF Which is Compatible with High Robustness and Catalyst Coating Capability for SCR Coated DPF Application

2013-04-08
2013-01-0840
Diesel emission regulation becomes stringent more and more regarding both particulate matter (PM) and NOx in the worldwide. SCR coated DPF system is considered as one of the promising options for future diesel exhaust after-treatment because it has several benefits such as the downsizing of the system, quick light-off of the catalytic function due to mounting closed-couple position. To integrate the SCR converter into the DPF, it is necessary to design the DPF substrate's porosity higher and pore size larger than conventional DPF to improve SCR catalyst coating capability. However to make the porosity higher will lose the robustness in general. Against these problems, it was studied to improve the high porosity DPF performances by applying the new technology to modify the thermal shock resistance property.
Technical Paper

Durability of Filtration Layers Integrated into Diesel Particulate Filters

2013-04-08
2013-01-0837
This paper describes the durability of the filtration layer integrated into Diesel Particulate Filters (DPFs) that we have developed to ensure low pressure loss and high filtration efficiency performances which also meet emission regulations. DPF samples were evaluated in regards to their performance deterioration which is brought about by ash loading and uncontrolled regeneration cycles, respectively. Ash was synthesized by using a diesel fuel/lubrication oil mixture and was trapped up to a level which corresponded to a 240,000km run, into the DPFs both with and without the filtration layer. Afterwards, aged-DPFs were measured with respect to their permeability, pressure loss, filtration efficiency, as well as soot oxidation speed using suitable analytical methods. Consequently, it has been confirmed that there was no noteworthy deterioration of the performances in the DPF with the filtration layer.
Technical Paper

The NH3-SCR Reaction Performance with Fe/Zeolite Based Catalytic Honeycomb Substrate

2009-04-20
2009-01-0906
Stringent NOx emission legislation accelerates the study of NOx aftertreatment. Urea-SCR system which is one of promising NOx reduction measures has been widely studied and been put to practical use not only for heavy duty vehicles but also passenger cars. As SCR catalyst, although use of zeolite ion-exchanged with transition metals (M/zeolite) has been under intense investigation, in particular, NOx conversion performance at low temperatures are still a challenging problem. Increasing the number of active sites is one of countermeasures to solve the problem. In this study, a catalytic honeycomb substrate mainly comprised of M/zeolite (NCH structure) and a conventional wash coated type catalyst(conventional structure) were prepared, respectively. To clarify the advantage of NCH structure, a relationship between NH3 adsorption and NOx conversion of the NCH structure and of the conventional structure were evaluated in both synthetic gas bench and engine bench.
Technical Paper

Improving of the Filtration and Regeneration Performance by the Sic-DPF with the Layer Coating of PM Oxidation Catalyst

2008-04-14
2008-01-0621
DPF has become widely known as an indispensable after-treatment component for the purification of the particulate matter in the diesel exhaust gas. But, in order to correspond to further regulation strengthening such as carbon dioxide emission regulation and number-based particulate matter emission regulation, it must be necessary also for DPF to keep improving its performance. In this study, it was examined how to improve both the filtration efficiency and the oxidation efficiency of PM regarding the catalyzed DPF. SiC-made 10mil/300cpsi-OctoSquare asymmetric cell structure was chosen for the DPF substrate and PM oxidation catalyst was coated on the surface of the filter wall as a layer with the device of the coating method. As a result, it was found that the layer coated DPF has advantage on the filtration efficiency without soot accumulation and efficiency was similar to an uncoated one with 0.1 g/l soot loading.
Technical Paper

Fundamental Study and Possible Application of New Concept Honeycomb Substrate for Emission Control

2007-04-16
2007-01-0658
To meet the legislation of future diesel emission level, high-performance catalysts are desired. One of the key technologies to realize the catalyst is to highly disperse the precious metal on the catalytic support with high specific surface area. The catalytic support with high specific surface area is directly extruded in honeycomb configuration (New honeycomb substrate) and, as a result, the amount of catalytic support and the surface area reached to around factor of two compared with the conventional catalytic support.
Technical Paper

Performance Evaluation of SiC-DPF Sintered with Sintering Additive

2005-04-11
2005-01-0579
SiC is well known as a ceramic with high mechanical strength and thermal conductivity, and the R-SiC-DPF (recrystallized SiC-DPF) used these excellent properties is widely recognized as the substrate material for DPF. DPF system requires the material possessing high thermal shock resistance against an unexpected accident, such as an uncontrolled regeneration. One of the indices indicating the thermal shock resistance of the DPF is soot mass limit, which is an important factor determining the penalty of vehicle fuel consumption. In order to further increase the soot mass limits of R-SiC-DPF, this paper covers the attempts of IBIDEN to promote the sintering of the neck part of a SiC porous body using a sintering additive. Al2O3, well known as a sintering additive for a SiC dense body, was selected as the sintering additive.
Technical Paper

Further Durability Enhancement of Re-crystallized SiC-DPF

2004-03-08
2004-01-0954
SiC has very high thermal conductivity and mechanical strength. The cracking problem during regeneration could be successfully handled by using split-type DPFs that consist of multiple filter segments. For enhancing further durability of SiC-DPF, increasing the regeneration limit was successful by means of increasing a volume of the neck area located between SiC particles. The improvement was probably due to the lowering of Young's modulus and increasing of the thermal shock fracture resistance parameter R', which were results of increasing the neck volume and controlling the sintering method. Crack propagation mode changed from the conventional mode, and the cracks propagating throughout the whole tended to be restrained.
Technical Paper

Characterization of High Porosity SiC-DPF

2002-03-04
2002-01-0325
The pore diameter and porosity of SiC-DPF has been increased by elaborating its porous structure. Increasing the porosity of DPF decreases its strength and thermal conductivity. It was clarified how these characteristics affect the performance such as filtration characteristics, low pressure loss, maximum soot loading limit, and thermal response characteristics required for DPF. It was found that the basic characteristics of SiC such as high strength and high thermal conductivity play an important role in its high porosity.
Technical Paper

Characterization of SiC-DPF for Passenger Car

2000-03-06
2000-01-0185
In Europe, where diesel engine cars enjoy widely popularity, the major diesel-engine car manufacturers have already announced that they will equip their diesel engine vehicles with DPF systems. Silicon carbide(SiC) has good fundamental properties. And the crack problem during regeneration could be successfully controlled by using split-type DPF which consists of multiple filter segments. The functional characteristics were focused on. For DPF, a model test by which events that may actually occur on vehicles can be produced is said to have not yet been established. From this point of view, in this study, SiC-DPF functions are characterized and evaluated under a regeneration system, and their correlation is discussed.
Technical Paper

SiC Diesel Particulate Filter Application to Electric Heater System

1999-03-01
1999-01-0464
A heater type automatic regeneration system able to be mounted on an automobile has been developed by utilizing the characteristics of SiC-DPF (Diesel Particulate Filters made of Silicon Carbide). In this development, in order to apply the system to wide applications, the main objective was to focus on reducing the regenerating electric power consumption. For the reduction of the power consumption, realization of a low pressure drop system effect by making the DPF structure high density and improvement of the axial insulation, controlling the gas flow velocity by a general purpose exhaust brake, saving of the electric power by using a DC heater driver utilizing MOSFETs (Metal Oxide semi-conductor field-effect transistor). As a result, a SiC-DPF heater unit usable in wide range of applications has successfully been developed.
X