Refine Your Search

Topic

Search Results

Technical Paper

Engine Efficiency Measurements Using a 100 kHz Radio Frequency Corona Igniter

2023-08-28
2023-24-0041
Conventional spark-ignition engines are currently incapable of meeting rising customer performance demands while complying with even stringent pollutant-emissions regulations. As a result, innovative ignition systems are being developed to accomplish these targets. Radio-Frequency corona igniters stand out for their ability to accelerate early flame growth speed by exploiting the combined action of kinetic, thermal and transport effects. Furthermore, a volumetric discharge enables the promotion of combustion over a wide area, as opposed to the local ignition of traditional spark. The present work wants to evaluate the advantages of a Streamer-type Radio Frequency corona discharge at about 100 kHz with respect to those of traditional spark igniter.
Technical Paper

Investigations on Hydrogen Injections Using a Real-Fluid Approach

2023-04-11
2023-01-0312
Computational fluid dynamics is used with the aim to gain further insights of the hydrogen injection process in internal combustion engines. To this end, three-dimensional RANS simulations of hydrogen under-expanded jets under a variety of injection pressures and temperatures and chamber backpressure are performed. A numerical framework that accounts for real-fluid effects is used which includes accurate non-linear mixing rules for thermodynamic and transport properties with multiple species. Jet formation process, transition to turbulent regime, and mixing process are investigated which are key aspects for the design of efficient injection and combustion. Different simulations are discussed to investigate the structures in the near field, such as Mach disk, barrel, and reflected shocks. It is found that for direct injection applications, especially in high back-pressure cases, accounting for real fluid behavior of hydrogen-air mixtures is important for accurate predictions.
Technical Paper

Lean Combustion Analysis of a Plasma-Assisted Ignition System in a Single Cylinder Engine fueled with E85

2022-09-16
2022-24-0034
Engine research community is developing innovative strategies capable of reducing fuel consumption and pollutant emissions while ensuring, at the same time, satisfactory performances. Spark ignition engines operation with highly diluted or lean mixture is demonstrated to be beneficial for engine efficiency and emissions while arduous for combustion initiation and stability. Traditional igniters are unsuitable for such working conditions, therefore, advanced ignition systems have been developed to improve combustion robustness. To overcome the inherent efficiency limit of combustion engines, the usage of renewable fuels is largely studied and employed to offer a carbon neutral transition to a cleaner future. For such a reason, both innovative ignition systems and bio or E-fuels are currently being investigated as alternatives to the previous approaches. Within this context, the present work proposes a synergetic approach which combines the benefits of a biofuel blend, i.e.
Technical Paper

Pressure and Flow Field Effects on Arc Channel Characteristics for a J-type Spark Plug

2022-03-29
2022-01-0436
Lean operation of spark ignition engines is a promising strategy for increasing thermal efficiency and minimize emissions. Variability on the other hand is one of the main shortcomings in these conditions. In this context, the present study looks at the interaction between the spark produced by a J-type plug and the surrounding fluid flow. A combined experimental and numerical approach was implemented so as to provide insight into the phenomena related to the ignition process. A sweep of cross-flow velocity of air was performed on a dedicated test rig that allowed accurate control of the volumetric flow and pressure. This last parameter was varied from ambient to 10 bar, so as to investigate conditions closer to real-world engine applications. Optical diagnostics were applied for better characterization of the arc in different operating conditions. The spatial and temporal evolution of the arc was visualized with high-speed camera to estimate the length, width and stretching.
Technical Paper

Numerical Simulation of the Early Flame Development Produced by a Barrier Discharge Igniter in an Optical Access Engine

2021-09-05
2021-24-0011
Currently, conventional spark-ignition engines are unfit to satisfy the growing customer requirements on efficiency while complying with the legislations on pollutant emissions. New ignition systems are being developed to extend the engine stable operating range towards increasing lean conditions. Among these, the Radio-Frequency corona igniters represent an interesting solution for the capability to promote the combustion in a much wider region than the one involved by the traditional spark channel. Moreover, the flame kernel development is enhanced by means of the production of non-thermal plasma, where low-temperature active radicals are ignition promoters. However, at low pressure and at high voltage the low temperature plasma benefits can be lost due to occurrences of spark-like events. Recently, RF barrier discharge igniters (BDI) have been investigated for the ability to prevent the arc formation thanks to a strong-breakdown resistance.
Technical Paper

Experimental and Numerical Investigation of the Flow Field Effect on Arc Stretching for a J-type Spark Plug

2021-09-05
2021-24-0020
Nowadays internal combustion engines can operate under lean combustion conditions to maximize efficiency, as long as combustion stability is guaranteed. The robustness of combustion initiation is one of the main issues of actual spark-ignition engines, especially at high level of excess-air or dilution. The enhancement of the in-cylinder global motion and local turbulence is an effective way to increase the flame velocity. During the ignition process, the excessive charge motion can hinder the spark discharge and eventually cause a misfire. In this perspective, the interaction between the igniter and the flow field is a fundamental aspect which still needs to be explored in more detail to understand how the combustion originates and develops. In this work, a combined experimental and numerical study is carried out to investigate the flow field around the spark gap, and its effect on the spark discharge evolution.
Technical Paper

Numerical Investigation of Water Injection Effects on Flame Wrinkling and Combustion Development in a GDI Spark Ignition Optical Engine

2021-04-06
2021-01-0465
The new real driving emission cycles and the growing adoption of turbocharged GDI engines are directing the automotive technology towards the use of innovative solutions aimed at reducing environmental impact and increasing engine efficiency. Water injection is a solution that has received particular attention in recent years, because it allows to achieve fuel savings while meeting the most stringent emissions regulations. Water is able to reduce the temperature of the gases inside the cylinder, coupled with the beneficial effect of preventing knock occurrences. Moreover, water dilutes combustion, and varies the specific heat ratio of the working fluid; this allows the use of higher compression ratios, with more advanced and optimal spark timing, as well as eliminating the need of fuel enrichment at high load. Computational fluid dynamics simulations are a powerful tool to provide more in-depth details on the thermo-fluid dynamics involved in engine operations with water injection.
Technical Paper

Large Eddy Simulations of Supercritical and Transcritical Jet Flows Using Real Fluid Thermophysical Properties

2020-04-14
2020-01-1153
In order to understand supercritical jet flows further, well resolved large eddy simulations (LES) of a n-dodecane jet mixing with surrounding nitrogen are conducted. A real fluid thermodynamic model is used to account for the fuel compressibility and variable thermophysical properties due to the solubility of ambient gas and liquid jet using the cubic Peng-Robinson equation of state (PR-EOS). A molar averaged homogeneous mixing rule is used to calculate the mixing properties. The thermodynamic model is coupled with a pressure-based solver to simulate multispecies reacting flows. The numerical model is based on a second order accurate method implemented in the open source OpenFOAM-6 software. First, to evaluate the present numerical model for sprays, 1D advection and shock tube benchmark problems at supercritical conditions are shown.
Journal Article

An Enhanced Σ-Y Spray Atomization Model Accounting for Diffusion due to Drift-Flux Velocities

2020-04-14
2020-01-0832
Spray modeling techniques have evolved from the classic DDM (Discrete Drops Method) approach, where the continuous liquid jet is discretized into “drops” or “parcels” till advanced spray models often based on Eulerian approaches. The former technique, although computationally efficient, is essentially inadequate in highly dense jets, as in the near nozzle region of compression ignition engines, while the latter could lead to extreme levels of computational effort when resolved interface capturing methods, such as VoF (Volume of Fluids) and LS (Level-Set) types, are used. However, in a typical engineering calculation, the mesh resolution is considerably coarser than in these high fidelity computations. If one presumes that these interfacial details are far smaller than the mesh size, smoothing features over at least one cell ultimately results in a diffuse-interface treatment in a Eulerian framework.
Technical Paper

Experimental and Numerical Investigations of the Early Flame Development Produced by a Corona Igniter

2019-10-07
2019-24-0231
In order to reduce engine emissions and fuel consumption, extensive research efforts are being devoted to develop innovative ignition devices, able to extend the stable engine operating range towards increasing lean conditions. Among these, radio frequency corona ignition systems, which produce a strong electric field at a frequency of about 1 MHz, can create discharges characterized by simultaneous thermal and kinetic effects. These devices can considerably increase the early flame growth speed, initiating the combustion process in a wide region, as opposed to the local ignition generated by traditional sparks. To explore the corona ignition behavior, experimental campaigns were carried out to investigate different operating conditions, in a constant volume calorimeter designed to measure the deposited thermal energy. The present work compares the combustion development generated by a traditional spark and the corona igniter through computational fluid dynamics simulations.
Technical Paper

Development of a CFD Solver for Primary Diesel Jet Atomization in FOAM-Extend

2019-09-09
2019-24-0128
Ongoing development of a CFD framework for the simulation of primary atomization of a high pressure diesel jet is presented in this work. The numerical model is based on a second order accurate, polyhedral Finite Volume (FV) method implemented in foam-extend-4.1, a community driven fork of the OpenFOAM software. A geometric Volume-of-Fluid (VOF) method isoAdvector is used for interface advection, while the Ghost Fluid Method (GFM) is used to handle the discontinuity of the pressure and the pressure gradient at the interface between the two phases: n-dodecane and air in the combustion chamber. In order to obtain highly resolved interface while minimizing computational time, an Adaptive Grid Refinement (AGR) strategy for arbitrary polyhedral cells is employed in order to refine the parts of the grid near the interface. Dynamic Load Balancing (DLB) is used in order to preserve parallel efficiency during AGR.
Technical Paper

Large Eddy Simulation of Ignition and Combustion Stability in a Lean SI Optical Access Engine

2019-09-09
2019-24-0087
Large-Eddy simulations (LES) are becoming an engineering tool for studying internal combustion engines (ICE) thanks to their ability to capture cycle-to-cycle variability (CCV) resolving most of the turbulent flow structures. ICEs can operate under lean combustion conditions to maximize efficiency. However, instabilities associated with lean combustion may cause problems, such as excessive levels of CCV or even misfires. In this context, the energy released by the spark during the ignition and its interaction with the flow field are fundamental parameters that affect ignition stability and how combustion takes place and develops. The aim of this paper is the characterization of the combustion stability in a SI optical access engine, by means of multicycle LES simulations, using CONVERGE software. Sub-grid-scale turbulence is modeled with a viscous one-equation model.
Technical Paper

Heavy-Duty Compression-Ignition Engines Retrofitted to Spark-Ignition Operation Fueled with Natural Gas

2019-09-09
2019-24-0030
Natural gas is a promising alternative gaseous fuel due to its availability, economic, and environmental benefits. A solution to increase its use in the heavy-duty transportation sector is to convert existing heavy-duty compression ignition engines to spark-ignition operation by replacing the fuel injector with a spark plug and injecting the natural gas inside the intake manifold. The use of numerical simulations to design and optimize the natural gas combustion in such retrofitted engines can benefit both engine efficiency and emission. However, experimental data of natural gas combustion inside a bowl-in-piston chamber is limited. Consequently, the goal of this study was to provide high-quality experimental data from such a converted engine fueled with methane and operated at steady-state conditions, exploring variations in spark timing, engine speed and equivalence ratio.
Journal Article

Influence of Turbulence and Thermophysical Fluid Properties on Cavitation Erosion Predictions in Channel Flow Geometries

2019-04-02
2019-01-0290
Cavitation and cavitation-induced erosion have been observed in fuel injectors in regions of high acceleration and low pressure. Although these phenomena can have a large influence on the performance and lifetime of injector hardware, questions still remain on how these physics should be accurately and efficiently represented within a computational fluid dynamics model. While several studies have focused on the validation of cavitation predictions within canonical and realistic injector geometries, it is not well documented what influence the numerical and physical parameters selected to represent turbulence and phase change will have on the predictions for cavitation erosion propensity and severity. In this work, a range of numerical and physical parameters are evaluated within the mixture modeling approach in CONVERGE to understand their influence on predictions of cavitation, condensation and erosion.
Journal Article

Experimental and Computational Investigation of Subcritical Near-Nozzle Spray Structure and Primary Atomization in the Engine Combustion Network Spray D

2018-04-03
2018-01-0277
In order to improve understanding of the primary atomization process for diesel-like sprays, a collaborative experimental and computational study was focused on the near-nozzle spray structure for the Engine Combustion Network (ECN) Spray D single-hole injector. These results were presented at the 5th Workshop of the ECN in Detroit, Michigan. Application of x-ray diagnostics to the Spray D standard cold condition enabled quantification of distributions of mass, phase interfacial area, and droplet size in the near-nozzle region from 0.1 to 14 mm from the nozzle exit. Using these data, several modeling frameworks, from Lagrangian-Eulerian to Eulerian-Eulerian and from Reynolds-Averaged Navier-Stokes (RANS) to Direct Numerical Simulation (DNS), were assessed in their ability to capture and explain experimentally observed spray details. Due to its computational efficiency, the Lagrangian-Eulerian approach was able to provide spray predictions across a broad range of conditions.
Technical Paper

Combustion Behavior of an RF Corona Ignition System with Different Control Strategies

2018-04-03
2018-01-1132
It has been proved that Radio Frequency Corona, among other innovative ignition systems, is able to stabilize combustion and to extend the engine operating range in lean conditions, with respect to conventional spark igniters. This paper reports on a sensitivity analysis on the combustion behavior for different values of Corona electric control parameters (supply voltage and discharge duration). Combustion analysis has been carried out on a single cylinder PFI gasoline-fueled optical engine, by means of both indicating measurements and imaging. A high-speed camera has been used to record the natural luminosity of premixed flames and the obtained images have been synchronized with corresponding indicating acquisition data. Imaging tools allowed to observe and measure the early flame development, providing information which are not obtainable by a pressure-based indicating system.
Technical Paper

Analysis of RF Corona Ignition in Lean Operating Conditions Using an Optical Access Engine

2017-03-28
2017-01-0673
Radio Frequency Corona ignition systems represent an interesting solution among innovative ignition strategies for their ability to stabilize the combustion and to extend the engine operating range. The corona discharge, generated by a strong electric field at a frequency of about 1 MHz, produces the ignition of the air-fuel mixture in multiple spots, characterized by a large volume when compared to a conventional spark, increasing the early flame growth speed. The transient plasma generated by the discharge, by means of thermal, kinetic and transport effects, allows a robust initialization of the combustion even in critical conditions, such as using diluted or lean mixtures. In this work the effects of Corona ignition have been analyzed on a single cylinder optical engine fueled with gasoline, comparing the results with those of a traditional single spark ignition.
Technical Paper

Coupled Eulerian Internal Nozzle Flow and Lagrangian Spray Simulations for GDI Systems

2017-03-28
2017-01-0834
An extensive numerical study of two-phase flow inside the nozzle holes and the issuing jets for a multi-hole direct injection gasoline injector is presented. The injector geometry is representative of the Spray G nozzle, an eight-hole counter-bored injector, from the Engine Combustion Network (ECN). Homogeneous Relaxation Model (HRM) coupled with the mixture multiphase approach in the Eulerian framework has been utilized to capture the phase change phenomena inside the nozzle holes. Our previous studies have demonstrated that this approach is capable of capturing the effect of injection transients and thermodynamic conditions in the combustion chamber, by predicting phenomenon such as flash boiling. However, these simulations were expensive, especially if there is significant interest in predicting the spray behavior as well.
Journal Article

Numerical Investigation of Two-Phase Flow Evolution of In- and Near-Nozzle Regions of a Gasoline Direct Injection Engine During Needle Transients

2016-04-05
2016-01-0870
This work involves modeling internal and near-nozzle flows of a gasoline direct injection (GDI) nozzle. The Engine Combustion Network (ECN) Spray G condition has been considered for these simulations using the nominal geometry of the Spray G injector. First, best practices for numerical simulation of the two-phase flow evolution inside and the near-nozzle regions of the Spray G injector are presented for the peak needle lift. The mass flow rate prediction for peak needle lift was in reasonable agreement with experimental data available in the ECN database. Liquid plume targeting angle and liquid penetration estimates showed promising agreement with experimental observations. The capability to assess the influence of different thermodynamic conditions on the two-phase flow nature was established by predicting non-flashing and flashing phenomena.
Technical Paper

Optical Investigations on a Multiple Spark Ignition System for Lean Engine Operation

2016-04-05
2016-01-0711
The paper reports on the optical investigation of a multiple spark ignition system carried out in a closed vessel in inert gas, and in an optical access engine in firing condition. The ignition system features a plug-top ignition coil with integrated electronics which is capable of multi-spark discharges (MSD) with short dwell time. First, the ignition system has been characterized in constant ambient conditions, at different pressure levels. The profile of the energy released by the spark and the cumulated value has been determined by measuring the fundamental electrical parameters. A high speed camera has been used to visualize the time evolution of the electric arc discharge to highlight its shape and position variability. The multiple spark system has then been mounted on an optical access engine with port fuel injection (PFI) to study the combustion characteristics in lean conditions with single and multiple discharges.
X