Refine Your Search

Search Results

Viewing 1 to 14 of 14
Technical Paper

Performance Characteristics of a Mobile Heat Pump System at Low Ambient Temperature

2018-04-03
2018-01-0076
The demand for mobile heat pump systems increases with the growing popularity of electric vehicles. One big challenge of such systems using low pressure refrigerant is the substantial drop of heating capacity at low ambient temperature conditions, when heat is most needed. The low suction density associated with low operating pressure in the evaporator is the major reason for the capacity drop. In extremely low ambient temperature, compressor speed may need to be regulated in order to prevent suction pressure going below atmospheric pressure, hence further reducing heat pumping capability. Other factors like pressure drop induced temperature glide and refrigerant maldistribution in the outdoor evaporator also weakens the system ability to absorb heat from ambient air. This paper presents detailed and in-depth analysis of the performance and limiting factors on low ambient temperature operation of a mobile heat pump system using refrigerant R1234yf.
Technical Paper

Refrigerant Charge Imbalance in a Mobile Reversible Air Conditioning-Heat Pump System

2017-03-28
2017-01-0177
This paper presents the study of refrigerant charge imbalance between A/C (cooling) mode and HP (heating) mode of a mobile reversible system. Sensitivities of cooling and heating capacity and energy efficiency with respect to refrigerant charge were investigated. Optimum refrigerant charge level for A/C mode was found to be larger than that for HP mode, primarily due to larger condenser size in A/C mode. Refrigerant charge retention in components at both modes were measured in the lab by quick close valve method. Modeling of charge retention in heat exchangers was compared to experimental measurements. Effect of charge imbalance on oil circulation was also discussed.
Technical Paper

Experimental Study of an Air Conditioning-Heat Pump System for Electric Vehicles

2016-04-05
2016-01-0257
This paper presents the experimentally obtained performance characteristics of an air conditioning-heat pump system that uses heat exchangers from a commercially available Nissan Leaf EV. It was found that refrigerant charge needed for cooling operation was larger than that for heating function with the test setup. The effects of: a). indoor air flow rate, b). outdoor air flow rate, and c). compressor speed on heating capacity and energy efficiency were explored and presented. Appropriate opening size of expansion valve that controlled subcooling for better energy efficiency was discussed and results were presented. Expansion valve opening size also strongly affected charge migration. Warm-up tests at different ambient conditions showed the necessity of a secondary heater to be reserved for very low ambient temperature.
Technical Paper

Visualization and Analysis of Periodic Reverse Flow in an Automobile Microchannel Evaporator

2016-04-05
2016-01-0252
This paper presents the visualization of periodic reverse flow in tubes of an automobile microchannel evaporator. Two microchannel tubes in an off-the-shelf evaporator are modified so that the leading edges are transparent and the rest of the area remains unchanged, providing realistic air heating. Flow visualizations in air heated aluminum tubes and electric heating glass tube are compared and similar flow physics is identified. A mechanistic model of flow reversal is developed. The model is capable of simulating bubble generation, growth coalescence and reverse. The validation against experimental visualization is on the way.
Technical Paper

Refrigerant-Oil Flow at the Compressor Discharge

2016-04-05
2016-01-0247
Automotive air conditioning compressor produces an annular-mist flow consisting of gas-phase refrigerant flow with oil film and oil droplets. This paper reports a method to calculate the oil retention and oil circulation ratio based on oil film thickness, wave speed, oil droplet size, oil droplet speed, and mass flow rate. Oil flow parameters are measured by high-speed camera capture and video processing in a non-invasive way. The estimated oil retention and oil circulation ratio results are compared quantitatively with the measurements from system experiments under different compressor outlet gas superficial velocity. The agreement between video result and sampling measurement shows that this method can be applied in other annular-mist flow analysis. It is also shown that most of the oil exists in film from the mass point of view while oil droplets contributes more to the oil mass flow rate because they travel in a much higher speed.
Journal Article

An Infrared Thermography Based Method for Quantification of Liquid Refrigerant Distribution in Parallel Flow Microchannel Heat Exchanger

2015-04-14
2015-01-0357
This paper presents a method of utilizing infrared images to quantify the distribution of liquid refrigerant mass flow rate in microchannel heat exchangers, which are widely used in automobile air conditioning systems. In order to achieve quantification, a relationship is built between the liquid mass flow rate through each microchannel tube and the corresponding air side capacity calculated from the infrared measurement of the wall temperature. After being implemented in a heat exchanger model, the quantification method is validated against experimental data. This method can be used for several types of heat exchangers and it can be applied to various heat exchanger designs.
Technical Paper

Lubricant Effect on Performance of R134a MAC Microchannel Evaporators

2014-04-01
2014-01-0692
This paper presents an experimental study of lubricant effect on the performance of microchannel evaporators in a typical MAC system. R134a is used as the refrigerant with PAG46 lubricant. The increase of oil circulation rate elevates the pressure drop of the evaporator. The specific enthalpy change in evaporator decreases with increasing oil circulation rate, while refrigerant distribution appears to be more uniform as indicated by infrared images of the evaporator surface temperatures. Thus mass flow rate increases.
Technical Paper

Effect of Flow Regime in the Horizontal Inlet Header on Refrigerant-Oil Mixture Distribution in a MAC Microchannel Evaporator

2014-04-01
2014-01-0701
The effect of lubricant on distribution is investigated by relating the flow regime in the horizontal inlet header and the corresponding infrared image of the evaporator. Visualization of the flow regime is performed by high-speed camera. R134a is used as the refrigerant with PAG 46 as lubricant, forming foam in all flow regimes. Quantitative information including foam location, foam layer thickness is obtained using a matlab-based video processing program. Oil circulation rate effect on flow regime is analyzed quantitatively.
Journal Article

An Experimentally Validated Model for Predicting Refrigerant and Lubricant Inventory in MAC Heat Exchangers

2014-04-01
2014-01-0694
The paper presents a semi-empirical model to predict refrigerant and lubricant inventory in both evaporator and condenser of an automotive air conditioning (MAC) system. In the model, heat exchanger is discretized into small volumes. Temperature, pressure and mass inventory are calculated by applying heat transfer, pressure drop and void fraction correlations to these volumes respectively. Refrigerant and lubricant are treated as a zeotropic mixture with a temperature glide. As refrigerant evaporates or condenses, thermophysical properties are evaluated accordingly with the change of lubricant concentration. Experimental data is used to validate the model. As a result, refrigerant and lubricant mass is predicted within 20% in the evaporator. However, in the condenser, lubricant mass was consistently under-predicted while refrigerant mass was predicted within 15% error. Moreover, the lubricant under-prediction becomes more significant at higher Oil Circulation Ratio (OCR).
Journal Article

Periodic Reverse Flow and Boiling Fluctuations in a Microchannel Evaporator of an R134a Mobile Air-Conditioning System

2013-04-08
2013-01-1500
This paper presents experimental study of periodic reverse flow and induced boiling fluctuations in a microchannel evaporator and their impacts on performance of R134a mobile A/C system. Simultaneous flow visualization and pressure measurements revealed that reverse flow due to confined bubble longitudinal expansion caused periodic oscillations of the evaporator inlet pressure and the pressure drop, and their oscillation magnitude and frequency increase with ambient air temperatures because of higher average refrigerant mass flux and heat flux. Three potential impacts of vapor reverse flow reversal on evaporator performance are identified: 1) mild liquid maldistribution; 2) increased the evaporator pressure drop; 3) reduced heat transfer coefficient. Finally, to mitigate vapor reverse flow impacts, revised flash gas bypass (FGBR) method is proposed: vent and bypass backflow vapor trapped in the inlet header.
Journal Article

Effect of Lubricant on Two-phase Refrigerant Distribution in Microchannel Evaporator

2013-04-08
2013-01-1508
This paper presents a model analysis of oil effects on the distribution of two phase refrigerant in a parallel flow microchannel evaporator. A microchannel evaporator model developed and presented earlier (SAE paper 2012-01-0321) is enhanced by inclusion of the thermodynamic and transport properties of refrigerant-oil mixture and their impact on boiling heat transfer and pressure drop characteristics. R134a and PAG oil are selected as the working pair. Viscosity effect and OCR effect on refrigerant distribution are investigated using this model, and the results show that 1) High viscosity is detrimental for refrigerant distribution. 2) As OCR increases, distribution becomes worse; but at very high OCR, distribution becomes better. Some initial experimental results show that distribution becomes worse when OCR changes from 0.1% to 3%.
Technical Paper

Measurement and Visualization of R134a Distribution in the Vertical Header of the Microchannel Heat Exchanger

2013-04-08
2013-01-1498
Distribution of R134a in four different vertical headers of microchannel heat exchanger was investigated experimentally. R134a was provided into the header by the microchannel tubes (5 or 10 tubes) in the bottom pass. It left the header through the microchannel tubes (5 or 10 tubes) in the top pass representing the upward flow in the heat pump mode of the reversible systems. The inlet quality was varied from 0.2 to 0.8, and the inlet mass flow rate was from 1.5 to 4.5 kg/h per microchannel tube. Among the test conditions, the aluminum and transparent headers show similar results: refrigerant distribution is better when reducing quality at the same mass flow rate and when increasing mass flow rate at the same quality. Increasing the tubes protrusion and the number of the microchannel tubes usually improve the distribution due to the increase in mass flux. Based on the visualization, churn and separated flow regimes are identified.
Technical Paper

A Sensor for Estimating the Liquid Mass Fraction of the Refrigerant Exiting an Evaporator

2000-03-06
2000-01-0976
A traditional method of controlling evaporator superheat in a vapor compression air conditioning system is the thermostatic expansion valve (TXV). Such systems are often used in automotive applications. The TXV depends on superheat to adjust the valve opening. Unfortunately, any amount of superheat causes that evaporator to operate at reduced capacity due to dramatically lower heat transfer coefficients in the superheated region. In addition, oil circulation back to the compressor is impeded. The cold lubricant almost devoid of dissolved refrigerant is quite viscous and clings to the evaporator walls. A system that could control an air conditioner to operate with no superheat would either decrease the size of its existing evaporator while maintaining the same capacity, or potentially increase its capacity with its original evaporator. Also, oil circulation back to the compressor would be improved.
Technical Paper

Noise Generation from Expansion Devices in Refrigerant

1999-03-01
1999-01-0866
An experimental methodology and test facility has been developed to perform measurements of internal sound pressure radiated from expansion devices in refrigerant. The experimental test facility is designed to help attenuate reflected sound waves and minimize both vibrations to the test section and other flow disturbances. Measurements are made using microphones mounted flush to the inner wall of the refrigerant tube and the two-microphone technique is used to account for unattenuated reflections. Results show that expansion noise is related to system operating conditions. When vapor flow is present, the far field expansion noise is significant white noise over the audible frequency range. Downstream screens were found to significantly reduce the noise generated. Also, internal sound pressure attenuation with distance has been measured and the results agree closely with theoretical predictions for visco-thermal attenuation.
X