Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Objectified Evaluation and Classification of Passenger Vehicles Longitudinal Drivability Capabilities in Automated Load Change Drive Maneuvers at Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0245
The growing number of passenger car variants and derivatives in all global markets, their high order of software differentiability caused by regionally different legislative regulations, as well as pronounced market-specific customer expectations require a continuous optimization of the entire vehicle development process. Additionally, the continued increasingly stringent emission standards lead to considerable increases in powertrain hardware and control complexity. Also, efforts to achieve global market and brand specific multistep adjustable drivability characteristics as unique selling proposition, rapidly increase the scope for calibration and testing tasks during the development of the powertrain control units. The resulting extent of interdependencies between the drivability calibration and other development and calibration tasks require frontloading of development tasks.
Technical Paper

Fuel Properties and their Impact on Stochastic Pre-Ignition Occurrence and Mega Knock Severity in Turbocharged Direct Injection Engines

2020-04-14
2020-01-0614
Stochastic Pre-Ignition (SPI) or Low Speed Pre-Ignition (LSPI) is an abnormal combustion event that can occur during the operation of modern, highly boosted direct-injection gasoline engines. This abnormal combustion event is characterized by an undesired and early start of combustion that is not initiated by the spark plug. Early SPI events can subsequently lead to violent auto-ignitions that are referred to as Mega- or Super-Knock in literature and have the potential to severely damage engines in the field. Numerous studies to analyze impact factors on SPI occurrence and severity have been conducted in recent years. While initial studies have focused strongly on engine oil formulation, calibration and engine design and their respective impact on SPI initiation, the impact of physical and chemical properties of the fuel have also become of interest in recent years.
Technical Paper

Trade-off Analysis and Systematic Optimization of Heavy-Duty Diesel Hybrid Powertrain

2020-04-14
2020-01-0847
In recent years, while significant progress has been made in development of hybrid and battery electric vehicles for passenger car and light-duty applications to meet future fuel economy targets, application of hybrid powertrains to heavy-duty truck applications has been very limited. The relatively lower energy and power density of batteries in comparison to diesel fuel as well as the operating profiles of most of the heavy-duty trucks make the application of hybrid powertrain for these applications more challenging. The high torque and power requirements of heavy-duty trucks over a long operating range, the majority of which is at constant cruise point, along with a high payback period, complexity, cost, weight and range anxiety, make the hybrid and battery electric solution less attractive than a conventional powertrain.
Technical Paper

Investigation of Diesel/Natural Gas RCCI Combustion Using Multiple Reaction Mechanisms at Various Engine Operating Conditions

2020-04-14
2020-01-0801
Past experimental studies conducted by the current authors on a 13 liter 16.7:1 compression ratio heavy-duty diesel engine have shown that diesel /natural gas Reactivity Controlled Compression Ignition (RCCI) combustion targeting low NOx emissions becomes progressively difficult to control as the engine load is increased due to difficulty in controlling reactivity levels at higher loads. For the current study, CFD investigations were conducted using the SAGE combustion solver in Converge with the application of Rahimi mechanism. Studies were conducted at a load of 5 bar BMEP to validate the simulation results against RCCI test data. In the low load study, it was found that the Rahimi mechanism was not able to predict the RCCI combustion behavior for diesel injection timings advanced beyond 30bTDC. This behavior was found at multiple engine speed and load points.
Technical Paper

Relevance of exhaust aftertreatment degradation for EU7 gasoline engine applications

2020-04-14
2020-01-0382
Exhaust aftertreatment systems must function sufficiently over the full useful life of a vehicle. In Europe this is currently defined as 160.000 km, but it is expected that with introduction of EU7, the required mileage will be extended to 240.000 km. This will then be consistent with the US legislation. While emission limits are tightened, additional engine operation areas become relevant for certification. This results in new challenges in terms of limiting the deterioration of the conversion efficiencies of the exhaust aftertreatment system during the life of the vehicle. Before this backdrop, three-way catalyst aging and gasoline particulate filter ash accumulation are investigated in this paper. An advanced gasoline exhaust aftertreatment system with high platinum group metals loading, as expected necessary for the EU7, is evaluated.
Technical Paper

Analysis of Drivability Influence on Tailpipe Emissions by Means of Engine-in-the-Loop Test Benches

2020-04-14
2020-01-0373
Due to increasing environmental awareness, standards for pollutant and CO2 emission legislations are getting stricter in most markets around the world. In important markets such as Europe, also the emissions during driving on real roads, the so called “Real Driving Emissions” (RDE), are now a part of the type approval process for passenger cars. In addition to the hybridization and electrification of vehicles, the complexity and degrees of freedom of conventional powertrains with internal combustion engines are continuing to increase in order to comply with stricter exhaust emission standards. Besides the different requirements placed on vehicle emissions, the drivability capabilities of passenger vehicles desired by the costumers, varies within markets.
Technical Paper

Dynamic oil pressure in connecting rod bearings and their influence on innovative cranktrain technologies

2019-12-19
2019-01-2333
In order to lower friction losses and hence ensure low fuel consumption of internal combustion engines, borderline design of hydrodynamic cranktrain bearings is often unavoidable. To realize this without the risk of failures, detailed modelling of hydrodynamic effects is gaining more and more relevance. In this publication, an approach using flow simulation to couple hydrodynamic bearings with each other, will be introduced. This allows the state variables of the fluid in the supply bore of the crankshaft to be calculated transiently. One important aspect of this concerns the solubility of gas in oil. This paper demonstrates that the gas fractions in the supply bore of the crankshaft influence the pressures at the hydrodynamic bearings. Additionally, simulation results will be shown and also validated with measurement data.
Technical Paper

Evaluation of the Potential of Direct Water Injection in HCCI Combustion

2019-12-19
2019-01-2165
Homogeneous charge compression ignition (HCCI) is a part load, low-temperature combustion process which operates at lean mixtures and produces ultra-low NOX emissions. As opposed to SI engines that use a spark to control combustion timing, HCCI combustion is enabled by compression induced autoignition which is characterized by rapid global and spatial combustion yielding fuel efficiency benefits. This process is highly dependent on the in-cylinder state, including pressure, temperature and trapped mass. The absence of a direct combustion control proves to be a major challenge and results in unstable engine operation especially at the limits of the narrow operation range. In recent studies, direct water injection is used in HCCI combustion to stabilize combustion and increase the operation range. This paper outlines the thermodynamic influence and evaluation of the potential of water injection for HCCI combustion.
Technical Paper

Optical Spray Investigations on OME3-5 in a Constant Volume High Pressure Chamber

2019-10-07
2019-24-0234
Oxygenated fuels such as polyoxymethylene dimethyl ethers (OME) offer a chance to significantly decrease emissions while switching to renewable fuels. However, compared to conventional diesel fuel, they have lower heating values and different evaporation behaviors which lead to differences in spray, mixture formation as well as ignition delay. In order to determine the mixture formation characteristics and the combustion behavior of neat OME3-5, optical investigations have been carried out in a high-pressure-chamber using shadowgraphy, mie-scatterlight and OH-radiation recordings. Liquid penetration length, gaseous penetration length, lift off length, spray cone angle and ignition delay have been determined and compared to those measured with diesel-fuel over a variety of pressures, temperatures, rail pressures and injection durations.
Technical Paper

Analysis of the Emission Conversion Performance of Gasoline Particulate Filters Over Lifetime

2019-09-09
2019-24-0156
Gasoline particulate filters (GPF) recently entered the market, and are already regarded a state-of-the-art solution for gasoline exhaust aftertreatment systems to enable EU6d-TEMP fulfilment and beyond. Especially for coated GPF applications, the prognosis of the emission conversion performance over lifetime poses an ambitious challenge, which significantly influences future catalyst diagnosis calibrations. The paper presents key-findings for the different GPF application variants. In the first part, experimental GPF ash loading results are presented. Ash accumulates as thin wall layers and short plugs, but does not penetrate into the wall. However, it suppresses deep bed filtration of soot, initially decreasing the soot-loaded backpressure. For the emission calibration, the non-linear backpressure development complicates the soot load monitoring, eventually leading to compromises between high safety against soot overloading and a low number of active regenerations.
Technical Paper

Efficient Test Bench Operation with Early Damage Detection Systems

2019-09-09
2019-24-0192
The efficient operation of powertrain test benches in research and development is strongly influenced by the state of “health” of the functional test object. Hence, the use of Early Damage Detection Systems (EDDS) with Unit Under Test (UUT) monitoring is becoming increasingly popular. An EDDS should primarily avoid total loss of the test object and ensure that damaged parts are not completely destroyed, and can still be inspected. Therefore, any abnormality from the standard test object behavior, such as an exceeding of predefined limits, must be recognized at an early testing time, and must lead to a shutdown of the test bench operation. With sensors mounted on the test object, it is possible to isolate the damage cause in the event of its detection. Advanced EDDS configurations also optimize the predefined limits by learning new shutdown values according to the test object behavior within a very short time.
Technical Paper

Separation, Allocation and Psychoacoustic Evaluation of Vehicle Interior Noise

2019-06-05
2019-01-1518
Besides optical and haptic criteria, the interior noise especially influences the quality impression of a vehicle. Separately audible disturbing noises are usually perceived as inadequate product quality. As a result, the reduction of disturbing noise components is a key factor for the overall product quality. Since the acoustic optimization is a complex and time consuming process, the need for an analysis tool which identifies automatically disturbing engine noise components within the vehicle interior noise is high. For this reason, a novel analysis tool has been developed which extracts tonal and impulsive engine noise components from the overall engine noise, and evaluates the annoyance of each noticeable engine component automatically. In addition, each disturbing noise is allocated to the emitting engine component. It is then possible to listen to each engine component noise individually and synthesize a target noise by superimposing manually weighted component noises.
Technical Paper

NVH Aspects of Electric Drive Unit Development and Vehicle Integration

2019-06-05
2019-01-1454
The automotive industry continues to develop new powertrain and vehicle technologies aimed at reducing overall vehicle-level fuel consumption. Specifically, the use of electrified propulsion systems is expected to play an increasingly important role in helping OEM’s meet fleet CO2 reduction targets for 2025 and beyond. This will also include a strong growth in the global demand for electric drive units (EDUs). The change from conventional vehicles to vehicles propelled by EDUs leads to a reduction in overall vehicle exterior and interior noise levels, especially during low-speed vehicle operation. Despite the overall noise levels being low, the NVH behavior of such vehicles can be objectionable due to the presence of tonal noise coming from electric machines and geartrain components as well as relatively high shares of road/wind noise. In order to ensure customer acceptance of electrically propelled vehicles, it is imperative that these NVH challenges are understood and solved.
Journal Article

On the Measurement and Simulation of Flow-Acoustic Sound Propagation in Turbochargers

2019-06-05
2019-01-1488
Most of today’s internal combustion engines are turbocharged by combined radial compressors and turbines for downsizing. This mostly leads to reduced orifice noise of both intake and exhaust systems, but the detailed damping mechanisms remain yet unknown. Intake and exhaust systems are developed with 1D-CFD simulations, but validated acoustic sub-models for turbochargers are not yet available. Therefore the aim of this publication is studying the turbocharger’s silencing capabilities and subsequently develop new acoustic turbocharger models. The acoustic properties of the turbocharger can be well described by transmission loss. In addition to thermodynamic variations, parameter variations with wastegate and VTG systems were also performed. A total of four turbochargers of very different sizes were investigated. Low frequency attenuation is dominated by impedance discontinuities, increasing considerably with mass flow and pressure ratio.
Technical Paper

Analysis of the Impact of Production Lubricant Composition and Fuel Dilution on Stochastic Pre-Ignition in Turbocharged, Direct-Injection Gasoline Engines

2019-04-02
2019-01-0256
The occurrence of abnormal combustion events leading to high peak pressures and severe knock can be considered to be one of the main challenges for modern turbocharged, direct-injected gasoline engines. These abnormal combustion events have been referred to as Stochastic Pre-Ignition (SPI) or Low-Speed Pre-Ignition (LSPI). The events are characterized by an undesired, early start of combustion of the cylinder charge which occurs before or in parallel to the intended flame kernel development from the spark plug. Early SPI events can subsequently lead to violent auto-ignitions that are often referred to as Mega- or Super-Knock. These heavy knock events lead to strong pressure oscillations which can destroy production engines within a few occurrences. SPI occurs mainly at low engine speed and high engine load, thus limiting the engine operating area that is in particular important to achieve good drivability in downsized engines.
Technical Paper

Integration of an ORC Waste Heat Recovery with Electrification and Supercharging through Use of a Planetary Gear System for a Class 8 Tractor Application

2019-04-02
2019-01-0229
A novel approach to the Integration of Turbocompounding/WHR, Electrification and Supercharging technologies (ITES) to reduce fuel consumption in a medium heavy-duty diesel engine was previously published by FEV. This paper describes a modified approach to ITES to reduce fuel consumption on a heavy-duty diesel engine applied in a Class 8 tractor. The original implementation of the ITES incorporated a turbocompound turbine as the means for waste heat recovery. In this new approach, the turbocompound unit connected to the sun gear of the planetary gear set has been replaced by an organic Rankine cycle (ORC) turbine expander. The secondary compressor and the electric motor-generator are connected to the ring gear and the carrier gear respectively. The ITES unit is equipped with dry clutch and band brake allowing flexibility in mechanical and electrical integration of the ORC expander, secondary compressor and electric motor-generator to the engine.
Technical Paper

Scalable Mean Value Modeling for Real-Time Engine Simulations with Improved Consistency and Adaptability

2019-04-02
2019-01-0195
This article discusses highly flexible and accurate physics-based mean value modeling (MVM) for internal combustion engines and its wide applicability towards virtual vehicle calibration. The requirement to fulfill the challenging Real Driving Emissions (RDE) standards has significantly increased the demand for precise engine models, especially models regarding pollutant emissions and fuel economy. This has led to a large increase in effort required for precise engine modeling and robust model calibration. Two best-practice engine modeling approaches will be introduced here to satisfy these requirements. These are the exclusive MVM approach, and a combination of MVM and a Design of Experiments (DOE) model for heterogeneous multi-domain engine systems.
Technical Paper

Advanced Functional Pulse Testing of a Two-Stage VCR-System

2019-04-02
2019-01-1195
Two-stage variable compression ratio (VCR) systems for spark ignited engines offer a CO2 reduction potential of approx. 5%. Due to their modularity, connecting rod based VCR-systems can be integrated into existing engine assembly systems, where engines can be built in parallel with or without such a system, depending on performance and market requirements. In order to comply with the new RDE emission standards with high specific power engine variants, VCR systems enable high load engine operation without fuel enrichment. The interactions between the hydraulic-, mechanical - and oil supply systems of a VCR-system with variable connecting rod length are complex and require a well-developed and adapted layout of all subsystems. This demands the use of tailored measurement and simulation tools during the development and application phases. In this context, Advanced Functional Pulse Testing enables single-parameter analyses of VCR con rods.
Technical Paper

Experimental Investigations on the Influence of Valve Timing and Multi-Pulse Injection on GCAI Combustion

2019-04-02
2019-01-0967
Gasoline Controlled Auto-Ignition (GCAI) combustion, which can be categorized under Homogeneous Charge Compression Ignition (HCCI), is a low-temperature combustion process with promising benefits such as ultra-low cylinder-out NOx emissions and reduced brake-specific fuel consumption, which are the critical parameters in any modern engine. Since this technology is based on uncontrolled auto-ignition of a premixed charge, it is very sensitive to any change in boundary conditions during engine operation. Adopting real time valve timing and fuel-injection strategies can enable improved control over GCAI combustion. This work discusses the outcome of collaborative experimental research by the partnering institutes in this direction. Experiments were performed in a single cylinder GCAI engine with variable valve timing and Gasoline Direct Injection (GDI) at constant indicated mean effective pressure (IMEP). In the first phase intake and exhaust valve timing sweeps were investigated.
Technical Paper

Effect of Engine Operating Parameters on Space- and Species-Resolved Measurements of Engine-Out Emissions from a Single-Cylinder Spark Ignition Engine

2019-04-02
2019-01-0745
The development and validation of detailed simulation models of in-cylinder combustion, emission formation mechanisms and reaction kinetics in the exhaust system are of crucial importance for the design of future low-emission powertrain concepts. To investigate emission formation mechanisms on one side and to create a solid basis for the validation of simulation methodologies (e.g. 3D-CFD, multi-dimensional in-cylinder models, etc.) on the other side, specific detailed measurements in the exhaust system are required. In particular, the hydrocarbon (HC) emissions are difficult to be investigated in simulation and experimentally, due to their complex composition and their post-oxidation in the exhaust system. In this work, different emission measurement devices were used to track the emission level and composition at different distances from the cylinder along the exhaust manifold, from the exhaust valve onwards.
X