Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Route Selection Strategy for Hybrid Vehicles Based on Energy Management and Real Time Drive Cycles

Air pollution levels in an urban environment is a major concern for developed and developing countries alike. Governments around the world are constantly trying to control and reduce air pollution levels through regulations. Low emission zones are being designated in cities worldwide in order to reduce the level of pollutants in big cities. The automotive industry is affected by those regulations and they are becoming more demanding over the years. Present work is aimed at developing a control strategy for a hybrid vehicle in order to optimize the fuel economy and emission levels based on GPS information, driver specific driving characteristics and weather forecast data for a given route. It uses powertrain model of a hybrid vehicle for developing route and driver specific control strategy. The full vehicle model has two sub-models: a route selector and a powertrain optimization model.
Technical Paper

Technology Choices for Optimizing the Performance of Racing Vehicles

In the continuous search for technology to improve the fuel economy and reduce greenhouse gas emission levels from the automotive vehicle, the automotive industry has been evaluating various technological options. Since the introduction of stringent legislative targets in Europe as well as in the United States of America in late 20th Century, one of the viable options identified by the industry was the application of alternative powertrain. On the motorsport arena, changes introduced by the Formula 1 governing body (FIA) for the high-performance racing engines also focuses on fuel economy. FIA regulation for 2014 restricts the fuel-flow rate to a maximum of 100kg/hr beyond 10,500 rev/min and prescribe fuel flow rate below 10,500 rev/min operating conditions for the F1 Engines. In addition, Formula1 and Le Mans racing regulations actively promote the integration of the hybrid powertrain in order to achieve optimum fuel economy.
Technical Paper

Nanofluids and Thermal Management Strategy for Automotive Application

Stringent emission norms introduced by the legislators over the decades has forced automotive manufacturers to improve the fuel economy and emission levels of their engines continuously. Therefore, the emission levels of modern engines are significantly lower than pre-1990 engines. However, the improvement in fuel economy is marginal when compared to that of emission levels. For example, approximately 30% of total energy in the fuel is being wasted through the cooling systems in the modern engines. Therefore, thermal management systems are being developed to reduce these losses and offer new opportunities for improving the fuel economy of the vehicles. One of the new emerging technologies for thermal management is the use of nanofluids as coolant. Nanofluids are a mixture of nano-sized particles added to a base fluid to improve its thermal characteristics.
Technical Paper

Performance of Ancillary Systems of 2014+ Le Mans LMP1-H Vehicles and Optimization

This study details the investigation into the hybridization of engine ancillary systems for 2014+ Le Mans LMP1-H vehicles. This was conducted in order to counteract the new strict fuel-limiting requirements governing the powertrain system employed in this type of vehicle. Dymola 1D vehicle simulation software was used to construct a rectilinear vehicle model with a map based 3.8L V8 engine and its associated ancillary systems, including oil pumps, water pump and fuel pump as well as a full kinetic energy recovery system (ERS). Appropriate validation strategy was implemented to validate the model. A validated model was used to study the difference in fuel consumption for the conventional ancillary drive off of the internal combustion engine in various situational tests and a hybrid-electric drive for driving engine ancillaries.
Technical Paper

Numerical Simulation of Warm-Up Characteristics and Thermal Management of a GDI Engine

Improving the thermal efficiency of internal combustion engines over the engine operating range is essential for achieving optimum fuel economy. The thermal efficiency of the engine during cold start is one of the areas where significant improvement can be made if a suitable thermal management strategy is identified and implemented. Thermal management strategy in an engine can allow the engine to work at different operating temperatures in order to reduce the heat transfer loss by ensuring optimum volumetric efficiency, efficient combustion and adequate safety margin for the durability of mechanical components. The aim of the present work was to numerically model the warm-up characteristics of a 4 cylinder, 1.6 litre, turbocharged and intercooled, Euro IV, gasoline direct injected engine. It used a fully validated engine model which works based on the predictive combustion model.
Technical Paper

Numerical Simulation of Adaptive Combustion Control for Fuel-Neutral ‘Smart’ Engines

The search for next generation transportation fuels in order to fully or partially replace petrol based fuels has resulted in use of varieties of fuels and fuel blends in internal combustion engines. However, the engine management systems are fuel specific and therefore, every major change in fuel composition requires significant amount of calibration work to optimize the operating variables in order to meet legislative emission targets and reduce the real-world emission and improve fuel economy levels. The current work has successfully devised a numerical simulation for the operation of a modern 4-cylinder turbocharged engine using an adaptive combustion modelling methodology that identifies a fuel type during engine start itself, and adapts engine operating parameters for optimum performance. A strategy was devised to use commercially available sensors to obtain and correlate measurable cylinder pressure based information for fuel identification.
Technical Paper

Hydrogen Enriched Diesel Combustion

Improving fuel economy and reducing greenhouse gas emissions from vehicle sources have been major research themes in recent times. One of the ways to achieve this is to use alternative fuels that can fully or partly replace petroleum-derived fuels using existing internal combustion engine technology so that the benefit from the alternative fuels can be realized immediately without delay. The present work attempted to investigate the performance and emission characteristics of a diesel engine using conventional diesel fuel with mixtures of hydrogen and oxygen generated from water at the point of use. Small amounts of hydrogen and oxygen were introduced in the air stream at the time of induction so that no extra injection system or additional modifications to the existing engine were required.