Refine Your Search

Topic

Search Results

Technical Paper

Data Analysis, Modeling, and Predictability of Automotive Events

2018-04-03
2018-01-0094
It is important to quantitatively characterize the automotive events in order to not only accurately interpret their past but also to reliably predict and forecast their short-term, medium-term, and even long-term future. In this paper, several automotive industry related events, i.e. vehicle safety, vehicle weight/HP ratio, the emissions of CO2, HC, CO, and NOx, are analyzed to find their general trends. Exponential and power law functions are used to empirically fit and quantitatively characterize these data with an emphasis on the two functions’ effectiveness in predictability. Finally, three empirical emission laws based on the historical HC, CO, and NOx data are proposed and the impact of these laws on emission control is discussed.
Technical Paper

A Fatigue S-N Curve Transformation Technique and Its Applications in Fatigue Data Analysis

2018-04-03
2018-01-0791
The approaches of obtaining both fatigue strength distribution and fatigue life distribution for a given set of fatigue S-N data are reviewed in this paper. A new fatigue S-N curve transformation technique, which is based on the fundamental statistics definition and some reasonable assumptions, is specifically developed in this paper to transform a fatigue life distribution to a fatigue strength distribution. The procedures of applying the technique to multiple-stress level, two-stress level, and one-stress level fatigue S-N data are presented.
Technical Paper

Corrosion-Fatigue Modeling and Materials Performance Ranking

2018-04-03
2018-01-1409
Corrosion-fatigue (CF) and stress corrosion cracking (SCC) have long been recognized as the major degradation and failure mechanisms of engineering materials under combined mechanical loading and corrosive environments. How to model and characterize these failure phenomena and how to screen, rank, and select materials in corrosion-fatigue and stress corrosion cracking resistance is a significant challenge in the automotive industry and many engineering applications. In this paper, the mathematical structure of a superposition-theory based corrosion-fatigue model is investigated and possible closed-form and approximate solutions are sought. Based on the model and the associated solutions and test results, screening and ranking of the materials in fatigue, corrosion-fatigue are discussed.
Journal Article

Statistical Characterization, Pattern Identification, and Analysis of Big Data

2017-03-28
2017-01-0236
In the Big Data era, the capability in statistical and probabilistic data characterization, data pattern identification, data modeling and analysis is critical to understand the data, to find the trends in the data, and to make better use of the data. In this paper the fundamental probability concepts and several commonly used probabilistic distribution functions, such as the Weibull for spectrum events and the Pareto for extreme/rare events, are described first. An event quadrant is subsequently established based on the commonality/rarity and impact/effect of the probabilistic events. Level of measurement, which is the key for quantitative measurement of the data, is also discussed based on the framework of probability. The damage density function, which is a measure of the relative damage contribution of each constituent is proposed. The new measure demonstrates its capability in distinguishing between the extreme/rare events and the spectrum events.
Technical Paper

Development of Probabilistic Fatigue Life Distribution Functions with Lower and Upper Bounds

2017-03-28
2017-01-0354
A probabilistic distribution function roughly consists of two parts: the middle part and the tails. The fatigue life distribution at a stress/load level is often described with two-parameter lognormal or Weibull distribution functions, which are more suitable for modeling the mean (middle) behaviors. The domains of the conventional probabilistic distribution functions are often unbounded, either infinite small (0 for the two-parameter Weibull) or infinite large or both. For most materials in low- and medium-cycle fatigue regimes, the domains of fatigue lives are usually bounded, and the inclusion of the bounds in a probabilistic model is often critical in some applications, such as product validation and life management. In this paper, four- and five-parameter Weibull distribution functions for the probabilistic distributions with bounds are developed. Finally, the applications of these new models in fatigue data analysis and damage assessment are provided and discussed.
Technical Paper

Development of Lightweight Hanger Rods for Vehicle Exhaust Applications

2017-03-28
2017-01-1709
Recent stringent government regulations on emission control and fuel economy drive the vehicles and their associated components and systems to the direction of lighter weight. However, the achieved lightweight must not be obtained by sacrificing other important performance requirements such as manufacturability, strength, durability, reliability, safety, noise, vibration and harshness (NVH). Additionally, cost is always a dominating factor in the lightweight design of automotive products. Therefore, a successful lightweight design can only be accomplished by better understanding the performance requirements, the potentials and limitations of the designed products, and by balancing many conflicting design parameters. The combined knowledge-based design optimization procedures and, inevitably, some trial-and-error design iterations are the practical approaches that should be adopted in the lightweight design for the automotive applications.
Journal Article

Failure Mode Effects and Fatigue Data Analyses of Welded Vehicle Exhaust Components and Its Applications in Product Validation

2016-04-05
2016-01-0374
Vehicle exhaust components and systems under fatigue loading often show multiple failure modes, which should be treated, at least theoretically, with rigorous advanced bi-modal and multi-modal statistical theories and approaches. These advanced methods are usually applied to mission-critical engineering applications such as nuclear and aerospace, in which large amounts of test data are often available. In the automotive industry, however, the sample size adopted in the product validation is usually small, thus the bi-modal and multi-modal phenomena cannot be distinguished with certainty.
Technical Paper

Probabilistic Isothermal, Anisothermal, and High-Temperature Thermo-Mechanical Fatigue Life Assessment and CAE Implementations

2016-04-05
2016-01-0370
Fatigue life assessment is an integral part of the durability and reliability evaluation process of vehicle exhaust components and systems. The probabilistic life assessment approaches, including analytical, experimental, and simulation, CAE implementation in particular, are attracting significant attentions in recent years. In this paper, the state-of-the-art probabilistic life assessment methods for vehicle exhausts under combined thermal and mechanical loadings are reviewed and investigated. The loading cases as experienced by the vehicle exhausts are first categorized into isothermal fatigue, anisothermal fatigue, and high-temperature thermomechanical fatigue (TMF) based on the failure mechanisms. Subsequently, the probabilistic life assessment procedures for each category are delineated, with emphasis on product validation.
Journal Article

Approaches to Achieving High Reliability and Confidence Levels with Small Test Sample Sizes

2015-09-29
2015-01-2758
In product design and development stage, validation assessment methods that can provide very high reliability and confidence levels are becoming highly demanded. High reliability and confidence can generally be achieved and demonstrated by conducting a large number of tests with the traditional approaches. However, budget constraints, test timing, and many other factors significantly limit test sample sizes. How to achieve high reliability and confidence levels with limited sample sizes is of significant importance in engineering applications. In this paper, such approaches are developed for two fundamental and widely used methods, i.e. the test-to-failure method and the Binomial test method. The concept of RxxCyy (e.g. R90C90 indicates 90% in reliability and 90% in confidence) is used as a criterion to measure the reliability and confidence in both the test-to-failure and the Binomial test methods.
Technical Paper

Fatigue Design Curve Construction for Test Data with Linear/Linearized and Universal Slope Characteristics

2015-04-14
2015-01-0427
Fatigue testing and related fatigue life assessment are essential parts of the design and validation processes of vehicle components and systems. Fatigue bench test is one of the most important testing methods for durability and reliability assessment, and its primary function is to construct design curves based on a certain amount of repeated tests, with which recommendations on product design can be advised. How to increase the accuracy of predictions from test results, the associated life assessment, and to reduce the cost through reducing test sample size is an active and continuous effort. In this paper the current engineering practices on constructing design curves for fatigue test data are reviewed first.
Technical Paper

A Two-Parameter Model for Mixed-Mode Fatigue Crack Growth and Multiaxial Fatigue

2015-04-14
2015-01-0541
Engineering components and systems are usually subjected to mixed-mode and multiaxial fatigue loadings, and these conditions should be considered in product durability and reliability design and the maintenance of aging equipment, especially mission-critical components and systems. However, modeling the damage and degradation processes under these complex loading conditions is difficult and challenging task because not only the concepts, such as range, mean, peak, valley etc., developed for uniaxial loading usually cannot be directly transferred to mixed-mode and multiaxial loadings, but also some very unique phenomena related to these complex loading conditions. One such a phenomenon is the loading path effect that can be simply described as: out-of-phase loading is more damaging than in-phase loading for some ductile materials.
Journal Article

Correlation Measures and Their Applications in Structural Dynamics and Data Analyses

2014-09-30
2014-01-2307
This paper reviews the correlation concepts and tools available, with the emphasis on their historical origins, mathematical properties and applications. Two of the most commonly used statistical correlation indicators, i.e., modal assurance criterion (MAC) for structural deformation pattern identification/correlation and the coefficient of determination (R2) for data correlation are investigated. The mathematical structure of R2 is critically examined, and the physical meanings and their implications are discussed. Based on the insights gained from these analyses, a data scatter measure and a dependency measure are proposed. The applications of the measures for both linear and nonlinear data are also discussed. Finally, several worked examples in vehicle dynamics analysis and statistical data analyses are provided to demonstrate the effectiveness of these concepts.
Technical Paper

Probabilistic Thermal-Fatigue Life Assessment for Vehicle Exhaust Components and Systems

2014-09-30
2014-01-2305
Thermo-mechanical fatigue (TMF) resistance characterization and life assessment are extremely important in the durability/reliability design and validation of vehicle exhaust components/systems, which are subjected to combined thermal and mechanical loadings during operation. The current thermal-fatigue related design and validation for exhaust products are essentially based on testing and the interpretation of test results. However, thermal-fatigue testing are costly and time consuming, therefore, computer aided engineering (CAE) based virtual thermal-fatigue life assessment tools with predictive powers are strongly desired. Many thermal-fatigue methods have been developed and eventually implemented into the CAE tools; however, most of them are based on deterministic life assessment approach, which cannot provide satisfactory explanation for the observed uncertainties introduced in thermal-fatigue failure data.
Technical Paper

Quality Control and Improvement Based on Design of Experiments and Statistical Data Analysis

2014-04-01
2014-01-0774
A modern definition of quality control and improvement is the reduction of variability in processes and products. The reduced variability can be directly translated into lower costs, better functions and fewer repairs. However, the final quality of processes and products is sometimes derived from other measured variables through some implicit or explicit functional relationships. Sometimes, a tiny uncertainty in a variable can produce a huge uncertainty in a derived quantity. Therefore, the propagation of uncertainty needs to be understood and the individual variables need to be well controlled. More importantly, the critical factors that affect quality the most should be identified and thoroughly investigated. Design of experiments and statistical control plays central roles in finding root cause of failure, reduction of variability and quality improvement.
Journal Article

Durability and Reliability Test Planning and Test Data Analysis

2013-09-24
2013-01-2379
Durability/reliability design of products, such as auto exhaust systems, is essentially based on the observation of test data and the accurate interpretation of these data. Therefore, test planning and related data analysis are critical to successful engineering designs. To facilitate engineering applications, testing and data analysis methods have been standardized over the last decades by several standard bodies such as the American Society for Testing and Materials (ASTM). However, over the last few years, several effective testing and data analysis methods have been developed, and the existing standard procedures need to be updated to incorporate the new observations, knowledge, and consensus. In this paper, the common practices and the standard test planning and data analysis procedures are reviewed first. Subsequently, the recent development in accelerated testing, equilibrium based data fitting, design curve construction, and Bayesian statistical data analysis is presented.
Journal Article

Sample Size Reduction Based on Historical Design Information and Bayesian Statistics

2013-09-24
2013-01-2440
Numerous test data have been generated in many testing institutions over the years and the historical information from previous similar designs and operating conditions can shed light on the current and future designs since they would share some common features when the changes are not drastic. To effectively utilize the historical information for current and future designs, two steps are necessary: (1) finding an approach to consistently correlate the test data; (2) utilizing Bayesian statistics, which can provide a rigorous mathematical tool for extracting useful information from the historical data. In this paper, a procedure for test sample size reduction is proposed based on historical fatigue S-N test data and Bayesian statistics. First, the statistical information is extracted from a large amount of fatigue test data collected over the years.
Technical Paper

A Thermal-Fatigue Life Assessment Procedure for Components under Combined Temperature and Load Cycling

2013-04-08
2013-01-0998
High-temperature thermal-mechanical systems are considered as an indispensable solution to modern vehicle emission control. Such systems include advanced engines, manifolds, thermal regeneration systems, and many other systems. Creep, fatigue, oxidation, or their combinations are the fundamental underlying material degradation and failure mechanisms in these systems subjected to combined thermal and mechanical loadings. Therefore, the basic understanding and modeling of these mechanisms are crucial in engineering designs. In this paper, the state-of-the-art methods of damage/failure modeling and life assessment for components under thermal-fatigue loading, are reviewed first. Subsequently, a new general life assessment procedure is developed for components subjected to variable amplitude thermal- and mechanical- loadings, with an emphasis on hold-time effect and cycle counting.
Technical Paper

The Uncertainty of Estimated Lognormal and Weibull Parameters for Test Data with Small Sample Size

2013-04-08
2013-01-0945
In this paper, the uncertainty of the estimated parameters of lognormal and Weibull distributions for test data with small sample size is investigated. The confidence intervals of the estimated parameters are determined by solving available analytical equations, and the scatters of the estimated parameters with respect to the true values are estimated by using Monte Carlo simulation approaches. Important parameters such as mean, standard deviation, and design curve are considered. The emphasis is on the interpretation and the implication of the obtained shape parameter β of the Weibull distribution function and the design curve obtained from a lognormal distribution function. Finally, the possible impact of this study on the current engineering practice is discussed.
Technical Paper

Modeling and Simulation of Creep-Fatigue-Oxidation Crack Growth

2013-04-08
2013-01-0167
Creep, fatigue, oxidation, or their combinations are usually the fundamental underlying material degradation and failure mechanisms in advanced engines, manifolds, thermal regeneration systems, and other systems. Therefore, the basic understanding and appropriate mathematical modeling of these mechanisms are crucial in engineering designs. Several numerical simulation strategies are being pursued to achieve a long-term goal of virtual simulation of high-temperature degradation and failure of such components and systems. In this paper, as the first step of the effort in virtual high-temperature material failure simulation, the numerical simulation of the recently developed crack growth models, i.e. creep-fatigue, fatigue-oxidation, and creep-fatigue-oxidation models, are conducted. It is demonstrated that the models developed can be implemented in an efficient way for virtual life assessment and engineering design applications.
Journal Article

Durability/Reliability Analysis, Simulation, and Testing of a Thermal Regeneration Unit for Exhaust Emission Control Systems

2012-09-24
2012-01-1951
Durability and reliability performance is one of the most important concerns of a recently developed Thermal Regeneration Unit for Exhaust (T.R.U.E-Clean®) for exhaust emission control. Like other ground vehicle systems, the T.R.U.E-Clean® system experiences cyclic loadings due to road vibrations leading to fatigue failure over time. Creep and oxidation cause damage at high temperature conditions which further shortens the life of the system and makes fatigue life assessment even more complex. Great efforts have been made to develop the ability to accurately and quickly assess the durability/reliability of the system in the early development stage. However, reliable and validated simplified engineering methods with rigorous mathematical and physical bases are still urgently needed to accurately manage the margin of safety and decrease the cost, whereas iterative testing is expensive and time consuming.
X