Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Estimation of Poroelastic Material Properties of Noise Control Treatments Using Model Order Reduction

2024-04-09
2024-01-2336
Noise reduction is generally accomplished by applying appropriate noise control treatments at strategic locations. Noise control treatments consisting of poroelastic materials in layers are extensively used in noise control products. Sound propagation through poroelastic materials is governed by macroscopic material and geometric properties. Thus, a knowledge of material properties is important to improve the acoustical performance of the resulting noise control products. Since the direct measurement of these properties is cumbersome, these have been usually estimated indirectly from easily measurable acoustic performance metrics such as normal incidence sound transmission and/or absorption coefficient, measured using readily available impedance tube. The existing inverse characterization approaches fulfilled the estimation by curve fitting measured and predicted acoustic models.
Technical Paper

Application of a CFD Methodology for the Design of PEM Fuel Cell at the Channel Scale

2024-04-09
2024-01-2186
Polymer electrolyte membrane (PEM) fuel cells will play a crucial role in the decarbonization of the transport sector, in particular for heavy duty applications. However, performance and durability of PEMFC stacks is still a concern especially when operated under high power density conditions, as required in order to improve the compactness and to reduce the cost of the system. In this context, the optimization of the geometry of hydrogen and air distributors represents a key factor to improve the distribution of the reactants on the active surface, in order to guarantee a proper water management and avoiding membrane dehydration.
Technical Paper

Developing a dynamic test protocol for the updated IIHS deformable barrier

2024-04-09
2024-01-2510
The Insurance Institute for Highway Safety (IIHS) introduced its updated side-impact ratings test in 2020 to address the nearly 5,000 fatalities occurring annually on U.S. roads in side crashes. Research for the updated test indicated the most promising avenue to address the remaining real-world injuries was a higher severity vehicle-to-vehicle test using a striking barrier that represents a sport utility vehicle. A multi-stiffness aluminum honeycomb barrier was developed to match these conditions. The complexity of a multi-stiffness barrier design warranted research into developing a new dynamic certification procedure. A dynamic test procedure was created to ensure product consistency. The current study outlines the process to develop a dynamic barrier certification protocol. The final configuration includes a rigid inverted T-shaped fixture mounted to a load cell wall. This fixture is impacted by the updated IIHS moving deformable barrier at 30 km/h.
Research Report

Textile Circularity and the Sustainability Model of New Mobility

2024-03-12
EPR2024006
The world is on a “take-make-waste,” linear-growth economic trajectory where products are bought, used, and then discarded in direct progression with little to no consideration for recycling or reuse. This unsustainable path now requires an urgent call to action for all sectors in the global society: circularity is a must to restore the health of the planet and people. However, carbon-rich textile waste could potentially become a next-generation feedstock, and the mobility sector has the capacity to mobilize ecologically minded designs, supply chains, financing mechanisms, consumer education, cross-sector activation, and more to capitalize on this “new source of carbon.” Activating textile circularity will be one of the biggest business opportunities to drive top- and bottom-line growth for the mobility industry.
Research Report

Automated Vehicles and Infrastructure Enablers: Curbs and Curbside Management

2024-03-06
EPR2024005
Curbs are as key to automated driving system (ADS) navigation, operation, and safety as they are for human driven vehicles. The design, maintenance, and management of curbs and adjacent infrastructure can make the difference in whether ADS vehicles can pick up and deliver passengers and goods safely, efficiently, and effectively. Curbs may also be key to integrating ADS services with other forms of active and human-driven transportation. Benefits from accessibility, reduced emissions, and strong supply chains require that ADS vehicles be able to dock curbside in a manner that does not disrupt traffic or impede safe movement of people walking, biking, or using a mobility device. Automated Vehicles and Infrastructure Enablers: Curbs and Curbside Management addresses considerations regarding the curb with respect to pick up and drops for passengers and freight, as well as managing and designing both sides of the curb with respect to automated vehicles and other types of shared mobility.
Research Report

The Software-defined Vehicle and Its Engineering Evolution: Balancing Issues and Challenges in a New Paradigm of Product Development

2024-03-06
EPR2024007
The automobile is undergoing the biggest transformation of its 100-year history. Motivated by consumer desire for automobiles to integrate with their digital life and inspired by new electric vehicles (EVs) that routinely receive over-the-air software updates, traditional automakers are embarking on a journey to re-engineer the vehicle as a platform defined by software. The foundation of the shift is a complete re-design from a mechanical hardware-centric system to a cloud-connected, software-centric ecosystem where each function is executed via a service-oriented architecture. This is the basis of the software-defined vehicle (SDV). The Software-defined Vehicle and its Engineering Evolution: Balancing Issues and Challenges in a New Paradigm of Product Development examines the complex journey ahead for traditional manufacturers as they transition to this new software-defined system.
Technical Paper

A Research Work to Develop an E-Axle Generic DVP for the Indian Market Complying with Indian and International Standards

2024-01-16
2024-26-0118
The electric vehicle market in India has tremendous growth potential in the upcoming years and decades, attracting numerous automotive manufacturers, including Tier-1 suppliers, seeking to participate in this growth phase. Electric powertrains used in e-cars on Indian roads comply with BIS and AIS standards. However, these standards alone do not provide sufficient clarity on the complete list of tests required for developing an e-Axle through all stages of development. Developing the e-Axle in-house for the Indian market poses a significant challenge for OEMs and Tier-1 suppliers, as it will play a crucial role in overall profitability at high volumes in the long term. Adhering solely to the BIS and AIS standards may prove insufficient in fulfilling the developmental prerequisites of an electric axle (e-Axle) system.
Technical Paper

Enhancing Cargo Transportation Using Intelligent Systems for Better Logistic Management

2024-01-16
2024-26-0183
Efficient cargo transportation plays a crucial role in logistics management and supply chain operations. Accurately detecting and utilizing cargo space within vehicles is vital for maximizing transport capacity, minimizing costs, and optimizing resource allocation and time management. This research paper focuses on enhancing cargo utilization using intelligent systems to improve logistics management. The major research is on developing a system that combines computer vision algorithms and intelligent systems to detect and implement a combination of features for efficient use of cargo space within vehicles and monitor cargo to reduce losses. The proposed approach will use and utilize image processing methods to get relevant features and identify cargo areas.
Research Report

Developing the Role of the System Software Integrator to Mitigate Digital Infrastructure Vulnerabilities

2023-11-22
EPR2023028
Traditional physical infrastructure increasingly relies upon software. Yet, 75% of software projects fail in budget by 46% and schedule by 82%. While other systems generally have a “responsible-in-charge” (RIC) professional, the implementation of a similar system of accountability in software is not settled. This is a major concern, as the consequences of software failure can be a matter of life-or-death. Further, there has been a 742% average annual increase in software supply chain attacks on increasingly used open-source software over the past three years, which can cost up to millions of dollars per incident. Developing the Role of the System Software Integrator to Mitigate Digital Infrastructure Vulnerabilities discusses the verification, validation, and uncertainty quantification needed to vet systems before implementation and the continued maintenance measures required over the lifespan of software-integrated assets.
Technical Paper

Ride Comfort Analysis of Passive and Air Suspension System of Quarter-and-Half Car Using MATLAB/SIMULINK

2023-11-10
2023-28-0159
Manufacturing suspension systems is not a new or upcoming process, it has been in the market for years but still, the survival of the fittest plays a key role for the respective manufacturer. So, the main objective of the vehicle suspension system is to improve ride comfort, road handling and vehicle stability. A suspension system plays a vital role in a smooth and safe riding experience. So, an analysis of the suspension system should be done, and the results should be in the standard range. In this paper, the simulations of a quarter and half car passive spring and air suspension were analysed for ride comfort and suspension travel by mathematical modelling of the quarter-and-half car with the help of a system of equations.
Technical Paper

An Approach for Incorporating Learning into System Design: System Level Assessment Methodology

2023-09-05
2023-01-1517
Shafaat and Kenley in 2015 identified the opportunity to improve System Engineering Standards by incorporating the design principle of learning. The System Level Assessment (SLA) Methodology is an approach that fulfills this need by efficiently capturing the learnings of a team of subject matter experts in the early stages of product system design. By gathering expertise, design considerations are identified that when used with market and business requirements improve the overall quality of the product system. To evaluate the effectiveness of this approach, the methodology has been successfully applied over 400 times within each realm of the New Product Introduction process, including most recently to a Technology Development program (in the earliest stages of the design process) to assess the viability of various electrification technologies under consideration by an automotive Tier 1 supplier.
Technical Paper

Methods for the Holistic Evaluation of the Fuel Influence on Gasoline Engine Combustion

2023-06-26
2023-01-1210
The proportion of new registrations with battery-electric and hybrid powertrains is rising steadily. This shows the strong trend in the automotive industry away from conventional powertrains with internal combustion engines. The aim is to reduce the transport sector's contribution to CO2 emissions. However, it should be noted that this only applies when renewable energy is used. Studies show the relevance of the system boundaries under consideration, which makes the application of Life Cycle Assessment indispensable. According to these studies, the various types of powertrains differ only slightly in their greenhouse gas impact. Rather, the energy supply chain plays a significant role. Moreover, a ban on combustion engines would lead to an additional increase in cumulative CO2 emissions. An important aspect on the way to sustainable mobility solutions is addressing the existing fleet.
Technical Paper

Development of an Economical Water Spray Test Setup for Window Regulators

2023-05-25
2023-28-1322
In an automotive vehicle, the Window Regulator is an electro-mechanical assembly that is mounted inside the door. The basic function of the Window Regulator is to raise or lower the glass when required and hold the glass in closed position or in any desired position. During Water servicing or rains, Water will typically enter inside the door through the seals and on to the Window Regulator mechanism. Hence these conditions must be physically tested in the laboratory to assess the Window Regulator’s functionality which could get affected by Water intrusion. The Water spray test conditions are based on mutual agreement between Inteva Products and the OEMs. Water spray test involves moving the electric Window Regulator to upper stall position (Window closed) at a defined voltage and line resistance. The glass must be dwelled followed by spraying defined amount of Water which simulates the rain. The agreed number of test cycles would be around 4500 which lasts about 7 weeks.
Technical Paper

Tire Noise and In-Wheel Motor Noise in FE Simulations for Pass-By Noise Predictions

2023-05-08
2023-01-1094
Pass-by noise measurement is mandatory for automotive manufacturers for conformity of production. With evolving of pass-by noise requirements (under 68 dB in 2024), all the stakeholders should be able to comply with this criterion. OEMs, suppliers of passive acoustic treatments, road manufacturers and tire manufacturers are concerned and should deploy efforts to provide solutions for control of exterior noise. In this regard, simulations are preferable over measurement campaigns as they can provide fast feedback on passive exterior treatments for exterior noise control. In the particular case of Lightyear vehicles, the main contributors to pass-by noise are tires and in-wheel motors. Considering that, a contribution of each of these two sources of noise to pass-by noise will be described. Tire noise sources and motor noise sources will be replaced by simple monopole sources. The best monopole source location for both tires and motors is discussed.
Technical Paper

Verification of Driver Status Monitoring Camera Position Using Virtual Knowledge-Based Engineering

2023-04-11
2023-01-0090
A DMS (Driver Monitoring System) is one of the most important safety features that assist in the monitoring functions and alert drivers when distraction or drowsiness is detected. The system is based in a DSMC (Driver Status Monitoring Camera) mounted in the vehicle's dash, which has a predefined set of operational requirements that must be fulfilled to guarantee the correct operation of the system. These conditions represent a trade space analysis challenge for each vehicle since both the DSMC and the underlying vehicle’s requirements must be satisfied. Relying upon the camera’s manufacturer evaluation for every iteration of the vehicle’s design has proven to be time-consuming, resources-intensive, and ineffective from the decision-making standpoint.
Technical Paper

Conducting Comparisons of Multi-Body Dynamics Solvers with a Goal of Establishing Future Direction

2023-04-11
2023-01-0166
As passenger vehicle design evolves and accelerates, the use of multi-body dynamics solvers has proven to be invaluable in the engineering workflow. MBD solvers allow engineers to build virtual vehicle models that can accurately simulate vehicle responses and calculate internal forces, which previously could only be assessed using physical prototype builds with hundreds of measurement transducers. Evaluation and selection of solvers within an engineering environment is inherently a multi-dimensional activity that can include ease of use, retention of previously developed expertise, accuracy, speed, and integration with existing analysis processes. We discuss here some of the challenges present in developing capability and accumulating data to support each of these criteria. Developing a pilot model that is capable of being applied to a comprehensive set of use cases, and then verifying those use cases, required significant project management activity.
Technical Paper

A Novel Test Platform for Automated Vehicles Considering the Interactive Behavior of Multi-Intelligence Vehicles

2023-04-11
2023-01-0921
With the popularity of automated vehicles, the future mixed traffic flow contains automated vehicles with different degrees of intelligence developed by other manufacturers. Therefore, simulating the interaction behavior of automated vehicles with varying levels of intelligence is crucial for testing and evaluating autonomous driving systems. Since the algorithm of traffic vehicles with various intelligence levels is difficult to obtain, it leads to hardships in quantitatively characterizing their interaction behaviors. Therefore, this paper designs a new automated vehicle test platform to solve the problem. The intelligent vehicle testbed with multiple personalized in-vehicle control units in the loop consists of three parts: 1. Multiple controllers in the loop to simulate the behavior of traffic vehicles;2. The central console applies digital twin technology to share the same traffic scenario between the tested vehicle and the traffic vehicle, creating a mixed traffic flow. 3.
Technical Paper

Synergizing Artificial Intelligence with Product Recall Management Process

2023-04-11
2023-01-0867
There are a multitude of dynamics faced by any industry. There is also a consistent search and development of technological platforms and services to address these changes. This necessitates a shared work philosophy which involves multiple stakeholders. Verification and validation are integral part of any development irrespective of product, process, or services. Also, every industry has a regulatory compliance to adhere too. But the extent of complexity and the level of dependencies or interactions between modules as well as stakeholders involved, creates slippage at some or other level. Nowadays the industries are also driven by reuse for cost effectiveness. Though it marks the significant improvement in the capability to compete, compatibility is a key measure to a successful product or service launch and sustainability.
Technical Paper

Lowering Vehicle Powertrain Electrification Entry Cost Barrier

2023-04-11
2023-01-0486
Current hybrid and electric powertrains in Class 1 through to Class 7 vehicle segments, are still disadvantaged by very low market penetration due to high procurement and operational cost barriers which have increased the gap between the technology experience and the expected benefits of powertrain electrification. Fundamentally, baseline gasoline and diesel vehicles with over 100 years of established supply chain network and manufacturing economies of scale, have made it difficult for hybrid and electric alternatives to compete even with the continuous drop in price of these new technologies and numerous government incentives. A new approach is proposed in this segment with an Integrated Torque Assist Transmission (ITAT) that addresses the typical fuel inefficiency challenges of the baseline powertrains where mostly up to 12% of their fuel content is used for actual vehicle propulsion while the rest is lost to heat dissipation.
Technical Paper

Light-duty Plug-in Electric Vehicles in China: Evolution, Competition, and Outlook

2023-04-11
2023-01-0891
China's plug-in electric vehicle (PEV) market with stocks at 7.8 million is the world's largest in 2021, and it accounts for half of the global PEV growth in 2021. The PEV market in China has dramatically evolved since the pandemic in 2020: over 20% of all new PEV sales are from China by mid-2022. Recent features of PEV market dynamics, consumer acceptance, policies, and infrastructure have important implications for both the global energy market and manufacturing stakeholders. From the perspective of demand pull-supply push, this study analyzes China's PEV industry with a market dynamics framework by reviewing sales, product and brand, infrastructure, and government policies from the last few years and outlooking the development of the new government’s 14th Five-Year Plan (2021-2025).
X