Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Utilizing Weathering Effect to Understand Squeak Risk on Material Ageing

2021-09-22
2021-26-0280
Squeak and rattle concerns accounts for approximately 10% of overall vehicle Things Gone Wrong (TGW) and are major quality concern for automotive OEM’s. Objectionable door noises such as squeak and rattle are among the top 10 IQS concerns under any OEM nameplate. Customers perceive Squeak and rattle noises inside a cabin as a major negative indicator of vehicle build quality and durability. Door squeak and rattle issues not only affects customer satisfaction index, but also increase warranty cost to OEM significantly. Especially, issues related to door, irritate customers due to material incompatibilities. Squeaks are friction-induced noises generated by stick-slip phenomenon between interfacing surfaces. Several factors, such as material property, friction coefficient, relative velocity, temperature, and humidity, are involved in squeak noise causes.
Technical Paper

Door Seal Behavior Prediction and Enhancement in Performance Using Digital Simulation

2021-09-22
2021-26-0387
Automotive door seal has an important function which is used extensively where interior of the vehicle is sealed from the environment. Problem with door seal system design will cause water leakage, wind noise, hard opening or closing of doors, gap and flushness issue which impair customer’s satisfaction of the vehicle. Moreover, improper design of seal can lead to difficulty in installation of door seal on body panel. The design prudence and manufacturing process are important aspect for the functionality and performance of sealing system. However, the door sealing system involves many design and manufacturing variables. At the early design stage, it is difficult to quantify the effect of each of the multiple design variables. As there are no physical prototypes during rubber profile beading-out stages, engineers need to carry out non-linear numerical simulations that involve complex phenomena as well as static and dynamic loads for door seal.
Technical Paper

Sink Butt Welding for 120 Degree Door Frame Design

2021-09-22
2021-26-0440
This paper deals with vehicle door 120-degree joint rust issue and water leak faced in most of SUV cars. Generally based on vehicle segment its styling curves and exterior design are defined. A Sedan or Hatchback is provided with curves to show its fluidic design but a SUV is provided with Straight lines to show its aggressive look. In existing condition door frame Joint has sharp joints where weld bead is added to prevent rust in joint area, but still improper seating of weather strip on weld bead cause water leak. Door’s A Pillar Frame and Horizontal Frame match at 120 degree joint edges are chamfered straight to match perfectly. Weld bead runs over the matching profile to join it. But weld bead project over the Frame surface and affects weather strip seating & results in poor sealing. Adhesive added for better sealing also follows the same path on bead and create a path way for water entry. Thus in long run this water stagnates and cause chronic rust issues in frame.
Technical Paper

Influence of Inner Panel Structure in Overall Liftgate Performance

2021-04-06
2021-01-0830
Prevailing global industry has set an environment that fosters the search for new procedures, technology and/or knowledge that allows time reduction in vehicle development and, at the same time, to offer the best strength and reliability characteristics to the customers. Constant improvement mindset is applied to those systems that yield the highest interaction with the final user, among those, it is paramount to take notice of systems like the vehicle closures (such as liftgates, hood, doors, etc.). In automotive industry, the efforts to comply with high standards are often focused to incorporate new materials, which are resistant and lightweight, on the other hand, this project explores the liftgate behavior from a more fundamental standpoint, which is the geometry and how it is related to the requirements that the liftgate should comply with.
Technical Paper

Air Bind Effect on Door Slam Durability Performance

2021-04-06
2021-01-0822
In the vehicle development process, the door slam durability assessment is of significant importance in the estimation of fatigue life for body closure system. So far, various exertions have been taken into consideration to better represent the door slam simulation for door durability performance. Nowadays, with computer aided engineering (CAE) being extensively implemented, simulation procedures are constantly being investigated in order to get precise outcomes as physical testing. In a real world scenario, the customer closes the door frequently against the sealed cabin which offers the cabin pressure to close. The cabin pressure acts in the opposite direction of door closing providing the damping effect and minimizes the overall damage to the structure. Currently, simulations are focused on determining the total energy required for closing the door by summing up the energy lost in the weather seal and latch.
Technical Paper

1D Modeling of HVAC Unit Air Flow for Automatic Climate Control Simulations

2021-04-06
2021-01-0215
Advanced control techniques are widely used in different automotive applications including climate control. Significant costs associated with the development and calibration of such controllers can be reduced if these tasks are conducted in a virtual environment. Such a virtual environment can be developed by integrating the controller with the system model. Different scenarios can be then simulated to make sure functional objectives of the system are met. 1D models provide the necessary level of accuracy without imposing extra computational cost in such virtual environments. As such, they are perfect candidates for model, hardware or software-in-the loop validation benches for controls. Performance of a heating, ventilation and air-conditioning (HVAC) system can be controlled through the settings of the components like mode door, blend door, recirculation door, blower, and the compressor.
Technical Paper

Leading Edge Requirements Engineering for the Automotive Industry - With the Use of JAMA

2021-04-06
2021-01-0137
There have been many publications about requirements management, and still organizations are struggling to show 100% coverage and traceability in a lean way. It does not start with CMMI nor SPICE. It does not end with tools like DOORs, Polarion, Codebeamer or JAMA. It does depend on the right setup and how it feels in the everyday life of an engineer. This paper defines and explains what it takes to establish leading edge requirements engineering for the automotive industry. It describes how work day integration of requirements engineering and management can be achieved. The different roles in engineering are addressed with their unique needs to support them. One 120% RQM data model is shown and explained. The necessary rollout project is designed with activities to adapt a tool to existing processes and individual tools, explain, improve, transfer as well as train/coach the engineers.
Technical Paper

Analysis of Discretization for Transient Impact Loads on Door Closing

2021-04-06
2021-01-0799
The transient impact load generated by door closing is used as the input of the closing condition, which is an important part of door system investigation. In this article, the basic theory of transfer path analysis (TPA) is introduced to handle the abnormal vibration of the front-left door with the glass down stall position of a certain vehicle during the closure. The transient impact loads are discretized under the closed door and obtained using the inverse matrix (IM) method in TPA. Vehicle test and bench test are conducted. The closed door is subjected to the transient impact loads of the sealing strip and the latch on the body side. In the vehicle test, acceleration sensors are pasted on the target point and the reference point on the door to obtain the acceleration vibration response upon the door closure.
Technical Paper

Deep Generative Design Models for Improved Door Frame Performance

2021-04-06
2021-01-0243
Significance of CAE simulation thus is increasing because of its ability to predict the failure faster, also lot of design combinations can be evaluated with this before physical testing. Frame stiffness of side doors is one of the major criteria of a vehicle closure system. In most cases, designers around the globe will be designing same or very similar side door frame structures recurrently. In addition, in the current growing trend having an optimized side door frame design in quick time is very challenging. In this investigation, a new artificial intelligence (AI) approach was demonstrated to design and optimize frame reinforcement based on machine learning, which has been successful in many fields owing to its ability to process big data, can be used in structural design and optimization. This deep learning-based model is able to achieve accurate predictions of nonlinear structure-parameters relationships using deep neural networks.
Technical Paper

Passenger Car Door Closing Effort Prediction Using Virtual Simulation and Validation

2021-04-06
2021-01-0333
In the automobile industry, the door closing effort spells out the engineering and quality of the vehicle. After the visual impact a vehicle has on the customer, the doors are most likely the very first part of the vehicle he/she encounters, to enter and exit the vehicle. One of the customer’s very first impressions about the quality of the car is given by the behavior of the doors when opening and closing, the swinging velocity and the energy that is required to obtain a full latching that the door makes when closed by the user. Door closing effort gives an indication of how good or bad the vehicle is engineered. The purpose of this paper is to propose modifications in the door system which help in reduction of door closing effort or velocity by two different methods, EZ Slam Door and Bungee Rope. In this paper, parameters like hinge friction, hinge axis inclination, sealing, latch and air bind effect are analyzed which affect door closing effort.
Technical Paper

CAE Support to Vehicle Audio Installation Issues

2020-09-30
2020-01-1575
Audio CAE is an emerging area of interest for vehicle OEMs. Questions regarding early stages of the vehicle design, like choosing the possible positions for speakers, deciding the installation details that can influence the visual design, and integration of the low frequency speakers with the body & closures structure, are of interest. Therefore, at VCC, the development of the CAE methodology for audio applications has been undertaken. The key to all CAE applications is the loudspeaker model made available in the vibro-acoustic software used within the company. Such a model has been developed, implemented and verified in different frequency ranges and different applications. The applications can be divided into the low frequency ones (concerning the installation of woofers and subwoofers), and the middle/high frequency ones (concerning the installation of midrange and tweeter speakers). In the case of the woofer, it is the interaction with the body vibration that is of interest.
Technical Paper

3D Audio Reproduction via Headrest Equipped with Loudspeakers—Investigations on Acoustical Design Criteria

2020-09-30
2020-01-1567
This paper focuses on the analysis and evaluation of acoustical design criteria to produce a plausible 3D sound field solely via headrest with integrated loudspeakers at the driver/passenger seats in the car cabin. Existing audio systems in cars utilize several distributed loudspeakers to support passengers with sound. Such configurations suffer from individual 3D audio information at each position. Therefore, we present a convincing minimal setup focusing sound solely at the passenger’s ears. The design itself plays a critical role for the optimal reproduction and control of a sound field for a specific 3D audio application. Moreover, the design facilitates the 3D audio reproduction of common channel-based, scene-based, and object-based audio formats. In addition, 3D audio reproduction enables to represent warnings regarding monitoring of the vehicle status (e.g.: seat belts, direction indicator, open doors, luggage compartment) in spatial accordance.
Technical Paper

A Development and Evaluation of Optimal Fingerprint Authentication Algorithm in Vehicle Use Environment

2020-04-14
2020-01-0723
Hyundai Motor Company mass-produced the world's first fingerprint entry and start system. This paper is a study on the evaluation method to develop and verify the optimal fingerprint authentication algorithm for vehicle usage conditions. Currently, fingerprint sensors and algorithms in the IT industry have been developed for the electronic devices, and are not suitable for the harsh environment of the vehicle and the vehicle life cycle for more than 10 years. In order to optimize the fingerprint sensor and algorithm for the vehicle, this study consisted of 3way test methods. As a result, the fingerprint system could be optimized for the vehicle and the recognition rate and security could be optimized according to the sensor authentication level. Through this study, the door handle recognition rate was improved by 25% and the start button recognition rate by 10%, and the fingerprint entry and start system was mass-produced with security level that satisfies the immobilizer regulations.
Technical Paper

Evaluation of Functional Performance of Mechanism Using Multi Body Dynamics Simulation

2020-04-14
2020-01-0474
The functional performance of the mechanism plays a vital role in attracting customer concentration towards the product. It is the first interface for interaction with the customer. Hence it is important to evaluate the functional performance at the time of the design phase itself in order to eliminate the possibility of an increase in proto-builds. The functional performance of a mechanism comprises parameters like, a mechanism should perform its function for which it is designed, with minimum effort required and ease in functionality. Evaluation of such parameters at the design stage involves many assumptions and this brings chance variables in the methodology. In order to eliminate these assumptions, a methodology has been developed using the multi-body dynamics (MBD) model of mechanisms like gear shifting mechanism and cabin door outer handle mechanism.
Technical Paper

A Robust Methodology to Predict the Fatigue Life of an Automotive Closures System Subjected to Hinge and Check Link Load

2020-04-14
2020-01-0599
In order to provide an accurate estimation of fatigue life of automotive door hinges and check strap mounting location, it is crucial to understand the loading conditions associated with opening and closing the door. There are many random factors and uncertainties that affect the durability performance of hinge and check strap mount structures in either a direct or indirect way. Excessive loads are generated at the hinge and check arm mounting region during abuse conditions when opening the door. Repeating the abuse conditions will lead to fatigue failures in these components. Most influencing parameter affecting the fatigue performance for the door was the loads due to hinge-check arm sensitivity stoppage and the distance between hinge and check strap attachments. However, the probability of occurrences was low, but the impact is high.
Technical Paper

The Analysis and Control of Aural Discomfort inside a Car at the Instant of Door Closing

2020-04-14
2020-01-1260
With the continuous improvement of vehicle air leakage performance, an aural discomfort phenomenon had been occurred at the instant of vehicle door closing. There are many studies on door closing sound quality in past 20 years, but there is little publications on the study of the aural discomfort due to a transient high air pressure fluctuations. In this paper, the relationships of passenger’s aural discomfort produced by interior air pressure fluctuations are systematically studied. The ratio of door surface area to passenger compartment volume and other related parameters such as the cross-sectional area of a vehicle, the air extractor size, and the vehicle body air leakage under positive pressure are also studied through CAE analysis and verified through a large number of objective measurements and subjective vehicle evaluation.
Technical Paper

Impact of Different Types of Glazing on Thermal Comfort of Vehicle Occupants

2020-04-14
2020-01-1249
Due to intense peak summer temperatures and sunny summers in tropical countries like India etc., achieving the required thermal comfort of car occupants without compromising on fuel efficiency is becoming increasingly challenging. The major source of heat load on vehicle is Solar Load. Therefore, a study has been conducted to evaluate the heat load on vehicle cabin due to solar radiations and its impact on vehicle air-conditioning system performance with various combinations of door glasses and windscreen. The glasses used for this study are classified as green, dark green, dark gray, standard PVB (Polyvinyl Butyral) windscreen and PVB windscreen having infrared cut particles. For each glass, part level evaluation was done to find out the percentage transmittance of light of different wavelengths and heat flux through each glass.
Technical Paper

Robust Assessment of Automotive Door Structure by Considering Manufacturing Variations

2020-04-14
2020-01-0910
The automotive door structure experience various static and dynamic loading conditions while going through an opening and closing operation. A typical swing door is attached to the body with two hinges and a check strap. These mechanisms carry the loads while the door is opened. Similarly, while closing the door, the latch/striker mechanism along with the seal around the periphery of the door react all loads. Typically, computer aided engineering (CAE) simulations are performed considering a nominal manufacturing (or build) tolerance condition, that results in one loading scenario. But while assembling the door with the body, the build variations in door mechanisms mentioned above can result in different loading scenarios and it should be accounted for design evaluation. This paper discusses various build tolerances and its effect on door durability performances to achieve a robust door design.
Technical Paper

A Research on Kinematic Optimization of Auto Flush Door Handle System

2020-04-14
2020-01-0623
Today, many car manufacturers and their suppliers are very interested in power-operated door handles, known as auto flush door handles. These handles have a distinguishing feature in terms of the way they operate. They are hidden in door skins and deployed automatically when users need to open the door. It is obvious that it is a major exterior styling point that makes customers interested in the vehicles that apply it. To make this auto flush door handle, however, there lie difficulties. First, because there is no sufficient space inside a door, applying these handles can be a constraint in exterior design unless the structures of them are kinematic optimized. The insufficient space can also cause problems in appearance of the handles when they are deployed. The purpose of this study is to establish the kinematic system of auto flush door handle to overcome the exterior handicaps such as the excessive exposure of the internal area on the deployed position.
Technical Paper

A Study on Optimization of the Cross-Section of Door Impact Beam for Weight Reduction

2020-04-14
2020-01-0631
This paper focuses on the optimization of the cross-section of a panel type impact door beam. The key parameters of the cross-section of the beam were artificially changed by using a geometry morphing tool FCM (Fast Concept Modeler), which is plugged in to CATIA. Then, the metamodel of FE (Finite Element) analysis results was created and optimized using LS-OPT. The ANOVA (Analysis of Variance) analysis of results was carried out to find the factor of weight reduction. Finally, a new cross section concept was proposed to overcome the limitation of old structure. The optimization was carried out for the beam with the final cross-section to have 10 % or more reduction in total weight.
X