Refine Your Search

Topic

Author

Affiliation

Search Results

Research Report

Unsettled Technology Domains in Robotics for Automation in Aerospace Manufacturing

2019-12-20
EPR2019010
Cost reduction and increasing production rate are driving automation of aerospace manufacturing. Articulated serial robots may replace bespoke gantry automation or human operations. Improved accuracy is key to enabling operations such as machining, additive manufacturing, composite fabrication, drilling, automated program development and inspection. New accuracy standards are needed to enable process- relevant comparisons between robot systems. Accuracy can be improved through calibration of kinematic and joint stiffness parameters, joint output encoders, adaptive control that compensates for thermal expansion and feed- forward control that compensates for hysteresis and external loads. The impact of datuming could also be significantly reduced through modelling and optimization. High dynamic end-effectors compensate high-frequency disturbances using inertial sensors and reaction masses.
Research Report

Unsettled Issues in Balancing Virtual, Closed-Course, and Public-Road Testing of Automated Driving Systems

2019-12-20
EPR2019011
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the challenges of determining the optimal balance for testing automated driving systems (ADS). Three main issues are outlined that merit immediate interest: First, determining what kind of testing an ADS needs before it is ready to go on the road; Second, the current, optimal, and realistic balance of simulation testing and real-world testing; Third, the challenges of sharing data in the industry. SAE EDGE™ Research Reports are preliminary investigations of new technologies. The three technical issues identified in this report need to be discussed in greater depth with the aims of, first, clarifying the scope of the industry-wide alignment needed, second, prioritizing the issues requiring resolution, and, third, creating a plan to generate the necessary frameworks, practices, and protocols.
Research Report

Unsettled Domains Concerning Autonomous System Validation and Verification Processes

2019-12-20
EPR2019012
The Federal Aviation Administration (FAA) and the Department of Transportations' (DOT's) National Highway Traffic Safety Administration (NHTSA) face similar challenges regarding the regulation of autonomous systems powered by artificial intelligence (AI) algorithms that replace the human factor in the decision-making process. The validation and verification (V&V) processes contribute to the implementation of the correct system requirements. The V&V process is one of the steps of a development lifecycle starting with the definition of regulatory, marketing, operational, performance, and safety requirements. They define what a product is, and they flow down into lower level requirements defining control architectures, hardware, and software. The industry is attempting to define regulatory requirements and a framework to gain safety clearance of such products.
Research Report

Unsettled Technology Domains in Aerospace Additive Manufacturing Concerning Safety, Airworthiness, and Certification

2019-12-20
EPR2019008
Additive manufacturing (AM) is currently being used to produce many certified aerospace components. However, significant advantages of AM are not exploited due to unresolved issues associated with process control, feedstock materials, surface finish, inspection, and cost. Components subject to fatigue must undergo surface finish improvements to enable inspection. This adds cost and limits the use of topology optimization. Continued development of process models is also required to enable optimization and understand the potential for defects in thin walled and slender sections. Costs are high for powder-fed processes due to material costs, machine costs, and low deposition rates. Cost for wire-fed processes are high due to the extensive post-process machining required. In addition, these processes are limited to low-complexity features.
Research Report

Unsettled Issues in Determining Appropriate Modeling Fidelity for Automated Driving Systems Simulation

2019-12-06
EPR2019007
This SAE EDGE™ Research Report identifies key unsettled issues of interest to the automotive industry regarding the challenges of achieving optimal model fidelity for developing, validating, and verifying vehicles capable of automated driving. Three main issues are outlined that merit immediate interest: First, assuring that simulation models represent their real-world counterparts, how to quantify simulation model fidelity, and how to assess system risk. Second, developing a universal simulation model interface and language for verifying, simulating, and calibrating automated driving sensors. Third, characterizing and determining the different requirements for sensor, vehicle, environment, and human driver models. SAE EDGE™ Research Reports are preliminary investigations of new technologies.
Technical Paper

Comparative Experimental Investigation of Thumba and Argemone Oil Based Dual Fuel Blend in a Diesel Engine for Its Performance and Emission Characteristics

2019-11-21
2019-28-2375
An experimental investigation was conducted to explore the possibility of using the Thumba oil (Citrullus colocyntis) and Argemone Mexicana (non-edible and adulterer to mustard oil) as a dual fuel blend with diesel as an alternative of using pure diesel for its performance and emission characteristics. The work was carried on a single cylinder, four strokes, In-line overhead valve, direct injection compression ignition engine. The argemone and Thumba biodiesel were produced using the transesterification process and thereafter the important physio-chemical properties of produced blends were investigated. Four dual biodiesel blends like B10 (5% Argemone, 5% Thumba and 90% Diesel), B20, B30 and B40 were prepared for investigation process. The operating conditions adopted for the study was the entire range of engine loads and speed (1000-1500 r/min) keeping the injection pressure and injection timing at the OEM settings.
Technical Paper

Effect of Gasoline-Ethanol Blends on GDI Engine to Reduce Cost of Vehicle Ownership

2019-11-21
2019-28-2379
A major challenge for combustion engine development is to optimize the engine for improved fuel economy, reduce greenhouse gases. Stringent CAFÉ and emission norms require the customer to pay higher capital on vehicles. To offset the cost of ownership- cheaper and alternative energy sources are being explored. Ethanol blend with regular Gasoline, and CNG are such alternative fuels. Reducing the consumption of Gasoline also helps India’s dependence on import of crude oil. The study was carried on turbo-charged gasoline direct injection engine. The effect of ethanol on engine and vehicle performance is estimated and simulated numerically. The work is split into three stages: first the base 1D engine performance model was calibrated to match the experimental data. In parallel, vehicle level Simulink model was built and calibrated to match the NEDC cycle performance.
Technical Paper

Experimental Investigation on Performance and Emission Characteristics of a Single Cylinder CRDI Engine Fueled with Diesel-Methanol Blend

2019-11-21
2019-28-2380
Diesel engine is widely used for its high thermal efficiency and better fuel efficiency. However, increasing usage of petroleum fuel and environmental degradation motivates to use renewable biofuel as a replacement to conventional diesel. Biofuel produced from non-edible sources can be used as a partial substitute of diesel for the significant growth of fuel economy and reduction of environmental pollution. Methanol can be implemented as a blend fuel in the diesel without affecting engine design. In this paper, we study the effect of diesel-methanol blends and injection parameters in particular, start of injection (SOI) and fuel injection pressure (FIP) on a common rail direct injection (CRDI) diesel engine performance and emission were investigated. Four blends were prepared by mixing diesel with methanol (5%, 10%, 15% and 20% by mass) and adding a certain amount of oleic acid and Iso-butanol to get a stable blend.
Technical Paper

Modelling for Collective Effect of Muffler Geometric Modifications and Blended Microalgae Fuel Use on Exhaust Performance of a Four-Stroke Diesel Engine: A Computational Fluid Dynamics Approach

2019-11-21
2019-28-2377
Engine performance significantly depends on the effective exhaust of the combustion gases from the muffler. With stricter BSVI norms more efficient measures have to be adopted to reduce the levels of emissions from the exhaust to the atmosphere. Muffler along with reducing the engine noise is intended to control the back pressure as well. Back pressure change has a significant effect on muffler temperature distribution which affects the NOx emission from the exhaust. Many research communications have been made to reduce the exhaust emissions like HC, CO and CO2 from the exhaust by using different generation biofuels as an alternative fuel, yet they have confronted challenges in controlling the NOx content from the exhaust. This work presents the combined effect of Muffler geometry modifications and blended microalgal fuel on exhaust performance with an aim to reduce NOx emission form a four-stroke engine.
Technical Paper

A Mathematical Expression to Predict the Influence of Ethanol Concentration on Distillation Behavior of Gasoline-Ethanol Fuel Blend and Impact of Non-Ionic Surfactant on E20 Fuel

2019-11-21
2019-28-2386
Blending of primary alcohol in gasoline surges the vapour pressure significantly and exhibits azeotrope behaviour that effect severely on the atmospheric distillation yields. In this experiment, primary alcohol (Ethanol) were blended in varied volumetric proportion (5%, 10%, 15%, 20%, 25%) with hydrocracked gasoline, influence on volatility behaviour and distillation properties were investigated. Physical properties of this blends were investigated for vapour pressure (VP), VLI, DI and distillation which were selected to evaluate the influence of alcohol in azeotrope behaviour of the fuel mix reflected through pattern of distillation curve (temperature vs % recovery range). This fuel mix exhibited rise in recovery at 700C (E70), VP, VLI and area of azeotrope with increase in % of alcohol volume in gasoline blend.
Technical Paper

Experimental Investigation on the Performance and Emission Characteristics of a Direct Injection Diesel Engine Using Blends of Ethyl Ester of Jatropha Oil and Ethanol

2019-11-21
2019-28-2378
The need of Diesel as fuel has greatly pressurized the now scarcely available natural resources and is likely to become a luxury for the future generations. This paper aims at finding an alternate for diesel that can hopefully reduce the pressure on its existing demand. This paper presents a comparative study on use of different blends of Jatropha Oil (J) and Ethanol (E) as fuel in a diesel engine to observe its performance and emission characteristics. The findings are later compared with corresponding values of neat Diesel as fuel. Since Jatropha oil is more viscous and has polyunsaturated characteristics in its natural form, its ethyl ester was produced by transesterification process and later blended with Ethanol in different proportions like 90% J 10%E, 80J-20E, 70J-30E and 60J-40E.
Technical Paper

Emission Reduction of a Diesel Engine Fueled with Blends of Biofuel under the Influence of 1,4-Dioxane and Rice Husk Nano Particle

2019-11-21
2019-28-2387
In this modern era increase in pollution became a huge impact on the lives of all living creatures, in this automobile tends to be one of the major contributors in terms of air pollution thanks to their exhaust emissions. The objective of the present study is to reduce the amount of harmful pollutants emitted from the automobiles by the utilization of a biofuel further influenced by two additives (liquid and a Nano additive). In this study, first the bio oil is extracted, then the biofuel is mixed with diesel fuel at different proportions of 20%, 40% by volume. Experiments are carried out in a common rail direct injection, diesel engine, which is a stationary test engine manufactured by Kirloskar, connected to a computer setup with an open control unit. The emission values in the exhaust gases are obtained using AVL exhaust gas analyzer.
Technical Paper

Replacing Twin Electric Fan Radiator with Single Fan Radiator

2019-11-21
2019-28-2381
Downsizing is one of the crucial activities being performed by every automotive engineering organization. The main aim is to reduce - Weight, CO2 emissions and achieve cost benefit. All this is done without any compromise on performance requirement or rather with optimization of system performance. This paper evaluate one such optimization, where-in radiator assembly with two electric fan is targeted for downsizing for small commercial vehicle application. The present two fan radiator is redesigned with thinner core and use of single fan motor assembly. The performance of the heat exchanger is tested for similar conditions back to back on vehicle and optimized to get the balanced benefit in terms of weight, cooling performance and importantly cost. This all is done without any modification in vehicle interface components except electrical connector for fan. The side members and brackets design is also simplified to achieve maximum weight reduction.
Technical Paper

Utilisation Treated Waste Engine Oil and Diesohol Blends as Fuel for Compression Ignition Engine - An Experimental Study

2019-11-21
2019-28-2384
Diesel Ethanol (Diesohol) blends are one of the suitable alternative fuel to replace diesel for fueling the compression ignition engines. This experimental study is to utilize optimal fuel blend that contains a higher volume of ethanol in diesel with treated waste engine oil as co-solvent for preventing the phase separation. This study includes three stages: Treating the waste engine oil, preparation of diesel ethanol blends with treated waste engine oil as co-solvent, testing the blends for solubility, properties and performance in a compression ignition engines. Treatment of waste engine oil was conducted in five steps including the acid-clay treatment, in which acetic acid and fuller earth were used as treating materials. Solubility test was conducted for various proportions of diesel-ethanol blends (from 0% to 50% of ethanol by volume) and treated waste engine oil (from 5% to 25%). The stable blends were tested for essential properties as per the ASTM standards.
Technical Paper

Optimization of Bio-Diesel Fuel Filter Size Media and Configuration for Longer Service Interval

2019-11-21
2019-28-2391
Bio diesel is one of the most promising fuel which can not only replace the conventional fuels but also environment friendly in terms of Greenhouse gases emission. Adaptation of Bio diesel comes with reduced maintainability and high maintenance cost. Blends of biodiesel and conventional diesel are most commonly used in automotive diesel engines. Biodiesel is most popular choice as an alternate fuel of fossil diesel due to its easy availability, eco-friendly nature and minimum change in existing diesel engine for retro fitment. In this paper efforts have been taken to optimize the life of Fuel filter for bio diesel application. For improving Fuel filter life, modifications carried out in Fuel filter media, size and configuration. Further, Fuel filter tested on Engine test bed and Vehicle to establish the life of filter in real world usage condition. Testing Results were compared with existing diesel fuel filter.
Technical Paper

Approach for CO2 Reduction in India’s Automotive Sector

2019-11-21
2019-28-2388
India has gone through a lot of transformation over the last decade. Today it is the 6th largest and one of the fastest growing economies in the world. Rising income level, increased consumerism, rapid growth in urbanization and digitization have attributed to this change. Government focus on “Make in India” for promoting trade and investment in India have ensured that India emerge as one of the largest growing economies in the world. The automotive industry played a pivotal role in the manufacturing sector to boost economic activities in India. The passenger car market has increased 3 times over the last decade and it has led to increased mobility options for many people across India. However, this has put concerns on the country’s energy security and emission levels. According to IEA’s recent report on global CO2 emission, 32.31 Gt of CO2 emissions were from fuel combustion in 2016, out of which transport sector contributed ~25%.
Technical Paper

Development of a Graphical User Interface (GUI) Based Tool for Vehicle Dynamics Evaluation

2019-11-21
2019-28-2397
Objective metrics for performance evaluation of ride, handling and steering are required to compare, validate and optimize dynamic behavior of vehicles. Some of these objective metrics are recommended and defined by International Organization for Standardization (ISO) and Society of Automotive Engineers (SAE), which involve data processing, statistical analysis and complex mathematical operations on acquired data through simulation or experimental testing. Due to the complexity of operations and volume of data, evaluation is often time consuming and tedious. Process automation using existing tools such as MS Excel, nCode, Siemens LMS, etc. includes several limitations and challenges, which make it cumbersome to implement. This work is about development of a centralized platform for quantification, visualization and comparison of ride, handling and steering performance metrics obtained from testing and simulation data as per relevant ISO standards.
Technical Paper

Methodology for Failure Simulation Using 4 Corner 6 DOF Road Load Simulator of Overhanging Components: An Experimental Approach

2019-11-21
2019-28-2404
Nowadays, Road Load Simulators are used by automobile companies to reproduce the accurate and multi axial stresses in test parts to simulate the real loading conditions. The road conditions are simulated in lab by measuring the customer usage data by sensors like Wheel Force transducers, accelerometers, displacement sensors and strain gauges on the vehicle body and suspension parts. The acquired data is simulated in lab condition by generating ‘drive file’ using the response of the above mentioned sensors. Due to non- linear nature of the vehicle parts, transmissibility of load is a complex phenomenon. Due to this complex transmissibility, good simulation at wheel center does not always ensure good correlation at all vehicle locations. The low level of correlation is common at the locations like engine mount, horn bracket and other overhanging brackets which are away from the wheel center.
Technical Paper

Spring and Damper Tuning of an ATV to Reduce Transmissibility

2019-11-21
2019-28-2401
The application in vehicle ride and handling has been mostly subjective or intuitive. There are several methods to improve vehicle stability and handling. One of the methods is suspension tuning. The objective of this work is to perform dynamical analysis of suspension by spring and damper tuning to reduce transmissibility for an all-terrain vehicle. A baseline spring rate data is used for tuning to provide better ride. The Fox air shock absorbers with progressive damping are used for testing. First the dynamics simulation is carried out by using ADAMS CAR tool. A detailed characteristic of the air shocks is obtained at various loading conditions by experimentation using test rig. Based on it, the simulation has been carried out for desired tuning parameters of spring and damper to improve stability.
Technical Paper

Impact of Wheel-Housing on Aerodynamic Drag and Effect on Energy Consumption on an Electric Bus Body

2019-11-21
2019-28-2394
Role of wheel and underbody aerodynamics of vehicle in the formation of drag forces is detrimental to the fuel (energy) consumption during the course of operation at high velocities. This paper deals with the CFD simulation of the flow around the wheels of a bus with different wheel housing arrangements. Based on benchmarking, a model of a bus is selected and analysis is performed. The aerodynamic drag coefficient is obtained and turbulence around wheels is observed using ANSYS Fluent CFD simulation for different combinations of wheel-housing- at the front wheels, at the rear wheels and both in the front and rear wheels. The drag force is recorded and corresponding influence on energy consumption of a bus is evaluated mathematically. A comparison is drawn between energy consumption of bus body without wheel housing and bus body with wheel housing. The result shows a significant reduction in drag coefficient and fuel consumption.
X