Refine Your Search

Topic

Search Results

Technical Paper

Lean-Burn Stratified Alcohol Fuels Engines of Power Density up to 475 kW/Liter Featuring Super-Turbocharging, Rotary Valves, Direct Injection, and Jet Ignition

2020-09-15
2020-01-2036
Direct injection (DI) and jet ignition (JI), plus assisted turbocharging, have been demonstrated to deliver high efficiency, high power density positive ignition (PI) internal combustion engines (ICEs) with gasoline. Peak efficiency above 50% and power density of 340 kW/liter at the 15,000 rpm revolution limiter working overall λ=1.45 have been report-ed. Here we explore the further improvement in power density that may be obtained by replacing gasoline with ethanol or methanol, thanks to the higher octane number and the larger latent heat of vaporization, which translates in an increased resistance to knock, and permits to have larger compression ratios. Results of simulations are proposed for a numerical engine that uses rotary valves rather than poppet valves, while also using mechanical, rather than electric, assisted turbocharging. While with gasoline, the power density is 410-420 kW/liter, the use of oxygenates permits to achieve up to 475 kW/liter working with methanol.
Technical Paper

Series BEV with a Small Battery Pack and High-Efficiency ICE Onboard Electricity Production: B-Class, High-Roof Hatchback and Le Mans Hypercar Applications

2020-09-15
2020-01-2250
Data of battery electric vehicles (BEV) with and without a range extender internal combustion engines (ICE) are reviewed and integrated with weight and performance models. A BEV with an on-board, high efficiency, electricity generator based on positive ignition (PI) ICEs is proposed to improve the uptake of the BEV targeting city commuters while improving their economic and environmental impacts. The small ICE, that is working stationary, fixed load and speed, and the generator similarly optimized for a single point operation, permit an efficiency fuel chemical-to-electric of about 49%. This is much better than producing electricity centralized from combustion fuels (average efficiency with included distribution and recharging losses), and it does not require any electric recharging infrastructure. The range of cars can be extended to about the same values of today's car with traditional combustion engines.
Journal Article

Progress of Direct Injection and Jet Ignition in Throttle-Controlled Engines

2019-01-09
2019-26-0045
Direct injection and jet ignition is becoming popular in electrically assisted, turbocharged, F1 engines because of the pressure to reduce fuel consumption. Operation from homogeneous stoichiometric up to lean of stoichiometry stratified about λ = 1.5, occurs with fast combustion of reduced cyclic variability thanks to the enhanced ignition by multiple jets of hot, partially reacting products travelling through the combustion chamber. The fuel consumption has thus been drastically reduced in an engine that is, however, still mostly throttle controlled. The aim of the present paper is to show the advantages of direct injection and jet ignition based on model simulations of the operation of a high-performance throttle-controlled engine featuring rotary valves.
Technical Paper

Super-Turbocharging the Dual Fuel Diesel Injection Ignition Engine

2018-07-09
2018-28-0036
Turbocharging dramatically improves the power density of internal combustion engines both in the compression ignition and the spark ignition cases. However, a standalone turbocharger suffers from transient and steady state downfalls where the energy to turbine is either smaller or larger than what would be needed to optimize the engine operation in a specific steady state or transient point. Hence a concept was proposed of a super-turbocharger where the turbocharger shaft is connected to the crankshaft through a continuously variable transmission and a gear. Energy is drawn from the crankshaft or delivered to the crankshaft to improve the work in every operating point of the steady map. In this paper, the concept of super-turbocharger is applied to a six-cylinder, dual fuel diesel injection ignition engine. The system is modelled using state-of-the-art automotive software and simulations of the steady-state operation are presented.
Technical Paper

Super-Turbocharging the Gasoline Engine

2018-07-09
2018-28-0007
In this paper, the concept of super-turbocharging is applied, in simulation, to a four-cylinder direct injection jet ignition gasoline engine. Turbocharging improves the power density of internal combustion engines, both the compression ignition and the spark ignition. However, a standalone turbocharger suffers from transient and steady state performance and efficiency degradation where the energy to turbine is either smaller or larger than what would be needed to optimize the engine operation in a specific point. Hence a concept is proposed to use a super-turbocharger, where the turbocharger shaft is connected to the crankshaft through a continuously variable transmission (CVT) and a gears pair. Energy is drawn from the crankshaft or delivered to the crankshaft to better work in every operating point. The concept was originally proposed for a diesel engine. Here it is applied to a gasoline engine.
Technical Paper

CAD/CFD/CAE Modelling of Wankel Engines for UAV

2015-09-15
2015-01-2466
The Wankel engine for Unmanned Aerial Vehicle (UAV) applications delivers advantages vs. piston engines of simplicity, smoothness, compactness and high power-to-weight ratio. The use of computational fluid dynamic (CFD) and computer aided engineering (CAE) tools may permit to address the major downfalls of these engines, namely the slow and incomplete combustion due to the low temperatures and the rotating combustion chambers. The paper proposes the results of CAD/CFD/CAE modelling of a Wankel engine featuring tangential jet ignition to produce faster and more complete combustion.
Technical Paper

Compressed Natural Gas and Hydrogen Fuelling of a Naturally Aspirated Four Stroke Engine with One Intake and One Exhaust Horizontal Rotary Valve per Cylinder and Central Direct Injection and Spark or Jet Ignition

2015-04-14
2015-01-0325
The paper discusses the benefits of a four stroke engine having one intake and one exhaust rotary valve. The rotary valve has a speed of rotation half the crankshaft and defines an open passage that may permit up to extremely sharp opening or closing and very large gas exchange areas. This design also permits central direct injection and ignition by spark or jets. The dual rotary valve design is applied to a naturally aspirated V-four engine of 1000cc displacement, gasoline, methane or hydrogen fuelled with central direct injection and spark ignition. The engine is modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The novelty in the proposed dual rotary valve system is the combustion chamber of good shape and high compression ratio with central direct injector and spark plug or jet ignition, coupled to the large gas exchange areas of the rotary system.
Technical Paper

A Naturally Aspirated Four Stroke Racing Engine with One Intake and One Exhaust Horizontal Rotary Valve per Cylinder and Central Direct Injection and Ignition by Spark or Jet

2015-03-10
2015-01-0006
The paper discusses the benefits of a four stroke engine having one intake and one exhaust rotary valve. The rotary valve has a speed of rotation half the crankshaft and defines an open passage that may permit up to extremely sharp opening or closing and very large gas exchange areas. The dual rotary valve design is applied to a racing engine naturally aspirated V-four engine of 1000cc displacement, gasoline fuelled with central direct injection and spark ignition. The engine is then modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The improved design produces much larger power densities than the version of the engines with traditional poppet valves revving at higher speeds, with reduced frictional losses, and with larger gas exchange areas while also improving the fuel conversion efficiency thanks to the sharpness of opening or closing events.
Technical Paper

Turbo/Supercharged Two/Four Stroke Engines with One Intake and One Exhaust Horizontal Rotary Valve per Cylinder and Central Direct Injection and Ignition

2015-01-14
2015-26-0031
The present paper is an introduction to a novel rotary valve engine design addressing the major downfalls of past rotary valves applications while permitting the typical advantages of the rotary valves. Advantages of the solution are the nearly optimal gas exchange, mixture formation, ignition and combustion evolution thanks to the large gas exchange areas from the two horizontal valves per engine cylinder, the good shape of the combustion chamber, the opportunity to place a direct fuel injector and a spark or jet ignition device at the centre of the chamber. The novel engine design also permits higher speed of rotation not having reciprocating poppet valves and the reduced friction losses of the rotating only distribution. This translates in better volumetric efficiencies, combustion rates and brake mean effective pressures for improved power density and fuel efficiency. Additional advantages are the reduced weight and the better packaging.
Technical Paper

Design of 65 degree V4 Moto GP Engines with Pneumatic Poppet Valves or Rotary Valves

2015-01-14
2015-26-0176
Moto GP engines have since the year 2012 4 cylinders in V or inline layout for a total capacity of up to 1,000cc. With pneumatic valve spring but wet sump, and with the maximum bore limited to 81mm, the maximum speed these engines may have is about 18,000 rpm, with power outputs 250-260 HP. The paper presents the design of a 65 degree V4 Moto GP engine further optimizing the pneumatic poppet valve design, as well as a novel rotary valve design. The rotary valve permits up to extremely sharp opening or closing and very large gas exchange areas. The two engines are then modeled by using a 1D engine & gas dynamics simulation software package to assess the potentials of the solution. The improved design produces much larger power densities than the version of the engines with traditional poppet valves revving at higher speeds.
Technical Paper

A Novel Valve-Less Supercharged Small Two Stroke Engine of Top Brake Efficiency Above 36% and Power Density above 100 KW/Liter

2013-11-27
2013-01-2772
The paper presents a novel design for a two stroke thermal engine that delivers excellent fuel economy and low emissions within the constraints of today's cost, weight and size. The engine features asymmetrical port timing through a novel translating and rotating piston mechanism. The engine is externally scavenged and supercharged, has wet sump and oil pressure lubrication, direct injection, it is lightweight, easy to build, with minimal number of parts, low production cost, ability to be balanced and compact design. The two stroke mechanism produces a linear motion of the pistons as well as an elliptical path on the surface of the cylinder. This allows the piston to sweep as well as travel past the ports. Suitable slots around the raised lip of the piston generate the asymmetry that makes the exhaust port to open first and to close first. The inlet port remains open to complete the cylinder charging and allow supercharging. Direct fuel injection is adopted for best results.
Technical Paper

Reduced Warm-Up and Recovery of the Exhaust and Coolant Heat with a Single Loop Turbo Steamer Integrated with the Engine Architecture in a Hybrid Electric Vehicle

2013-11-27
2013-01-2827
The paper considers a novel waste heat recovery (WHR) system integrated with the engine architecture in a hybrid electric vehicle (HEV) platform. The novel WHR system uses water as the working media and recovers both the internal combustion engine coolant and exhaust energy in a single loop. Results of preliminary simulations show a 6% better fuel economy over the cold start UDDS cycle only considering the better fuel usage with the WHR after the quicker warm-up but neglecting the reduced friction losses for the warmer temperatures over the full cycle.
Technical Paper

Analysis of the Regenerative Braking Efficiency of a Latest Electric Vehicle

2013-11-27
2013-01-2872
Kinetic energy recovery systems (KERS) placed on one axle coupled to a traditional thermal engine on the other axle is possibly the best solution presently available to dramatically improve the fuel economy while providing better performances within strict budget constraints. Different KERS may be built purely electric, purely mechanic, or hybrid mechanic/electric differing for round trip efficiency, packaging, weights, costs and requirement of further research and development. The paper presents an experimental analysis of the energy flow to and from the battery of a latest Nissan Leaf covering the Urban Dynamometer Driving Schedule (UDDS). This analysis provides a state-of-the-art benchmark of the propulsion and regenerative braking efficiencies of electric vehicles with off-the-shelve technologies.
Technical Paper

Advances in Waste Heat Recovery Systems for Gas Engines

2013-09-24
2013-01-2433
The paper presents a novel concept of very efficient transportation engines for operation with CNG, LNG or LPG. The combustion system permits mixed diesel/gasoline-like operation changing the load by quantity of fuel injected and modulating the premixed and diffusion combustion phases for high fuel energy transfer to piston work. A waste heat recovery system (WHRS) is then recovering the intercooler and engine coolant energy plus the exhaust energy. The WHRS uses a power turbine on the exhaust and a steam turbine feed by a single loop turbo-steamer. The WHRS is the enabler of much faster warm up of the engine and further improvements of the top fuel conversion efficiency to above 50% for the specific case with reduced fuel efficiency penalties changing the load or the speed.
Technical Paper

KERS Braking for 2014 F1 Cars

2012-09-17
2012-01-1802
Small, high power density turbocharged engines coupled to kinetic energy recovery systems are one of the key areas of development for both passenger and racing cars. In passenger cars, the KERS may reduce the amount of thermal energy needed to reaccelerate the car following a deceleration recovering part of the braking energy. This translates in a first, significant fuel energy saving. Also considering the KERS torque boost increasing the total torque available to accelerate the car, large engines working at very low brake mean effective pressures and efficiencies over driving cycles may also be replaced by small higher power density engines working at much higher brake mean effective pressures and therefore much higher part load efficiencies. In racing cars, the coupling of small engines to KERS may improve the perception of racing being more environmentally friendly. The KERS is more a performance boost than a fuel saving device, permitting about same lap times with smaller engines.
Journal Article

Novel Crankshaft Mechanism and Regenerative Braking System to Improve the Fuel Economy of Light Duty Vehicles and Passenger Cars

2012-09-10
2012-01-1755
Improvements of vehicle fuel economy may be achieved by the introduction of advanced internal combustion engines (ICE) improving the fuel conversion efficiency of the engine and of advanced power trains (PWT) reducing the amount of fuel energy needed to power the vehicle. The paper presents a novel design of a variable compression ratio advanced spark ignition engine that also permits an expansion ratio that may differ from the compression ratio hence generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load torque output of the engine.
Technical Paper

Design of Rankine Cycle Systems to Deliver Fuel Economy Benefits over Cold Start Driving Cycles

2012-09-10
2012-01-1713
Prior papers have shown the potentials of gasoline-like internal combustion engines fitted with waste heat recovery systems (WHR) to deliver Diesel-like steady state fuel conversion efficiencies recovering the exhaust and the coolant waste heat with off-the-shelf components. In addition to the pros of the technology significantly increasing steady state efficiencies - up to 5 % in absolute values and much more in relative values - these papers also mentioned the cons of the technology, increased back pressures, increased weight, more complex packaging, more complex control, troublesome transient operation, and finally the cold start issues that prevent the uptake of the technology. This paper further explores the option to use Rankine cycle systems to improve the fuel economy of vehicles under normal driving conditions. A single Rankine cycle system is integrated here with the engine design.
Technical Paper

Improving the Efficiency of Turbocharged Spark Ignition Engines for Passenger Cars through Waste Heat Recovery

2012-04-16
2012-01-0388
The turbocharged direct injection stoichiometric spark ignition gasoline engine has less than Diesel full load brake engine thermal efficiencies and much larger than Diesel penalties in brake engine thermal efficiencies reducing the load by throttling. This engine has however a much better power density, and therefore may operate at much higher BMEP values over driving cycles reducing the fuel economy penalty of the vehicle. This engine also has the advantage of the very well developed three way catalytic converter after treatment to meet future emission regulations. In these engines the efficiency may be improved recovering the waste heat, but this recovery may have ultimately impacts on both the in cylinder fuel conversion efficiency and the efficiency of the after treatment.
Technical Paper

Novel Engine Concepts for Multi Fuel Military Vehicles

2012-02-29
2012-01-1514
The paper considers different options to design a multi fuel engine retaining the power densities and efficiencies of the latest Diesel heavy duty truck engines while operating with various other fuels. In a first option, an igniting Diesel fuel is coupled to a main fuel that may have any Cetane or octane number in a design where every engine cylinder accommodates a direct Diesel injector, a glow plug and the multi fuel direct injector in a bowl-in-piston combustion chamber configuration. Alternatively, an igniting gasoline fuel replaces the Diesel fuel in a design where every engine cylinder accommodates a gasoline direct injector, the multi fuel direct injector and a jet ignition pre chamber also with a bowl-in-piston combustion chamber configuration. Both these designs permit load control by changing the amount of fuel injected and Diesel-like, gasoline-like and mixed Diesel/gasoline-like modes of operation modulating the amount of the multi fuel that burn premixed or diffusion.
Technical Paper

Alternative Crankshaft Mechanisms and Kinetic Energy Recovery Systems for Improved Fuel Economy of Light Duty Vehicles

2011-09-13
2011-01-2191
The introduction of advanced internal combustion engine mechanisms and powertrains may improve the fuel conversion efficiency of an engine and thus reduce the amount of energy needed to power the vehicle. The paper presents a novel design of a variable compression ratio advanced spark ignition engine that also permits an expansion ratio that may differ from the induction stroke therefore generating an Atkinson cycle effect. The stroke ratio and the ratio of maximum to minimum in-cylinder volumes may change with load and speed to provide the best fuel conversion efficiency. The variable ratio of maximum to minimum in-cylinder volumes also improves the full load power output of the engine. Results of vehicle driving cycle simulations of a light-duty gasoline vehicle with the advanced engine show dramatic improvements of fuel economy.
X