Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Current and Torque Harmonics Analysis of Triple Three-Phase Permanent-Magnet Synchronous Machines with Arbitrary Phase Shift Based on Model-in-the-Loop

2024-07-02
2024-01-3025
Multiple three-phase machines have become popular in recent due to their reliability, especially in the ship and airplane propulsions. These systems benefit greatly from the robustness and efficiency provided by such machines. However, a notable challenge presented by these machines is the growth of harmonics with an increase in the number of phases, affecting control precision and inducing torque oscillations. The phase shift angles between winding sets are one of the most important causes of harmonics in the stator currents and machine torque. Traditional approaches in the study of triple-three-phase or nine-phase machines mostly focus on specific phase shift, lacking a comprehensive analysis across a range of phase shifts. This paper discusses the current and torque harmonics of triple-three-phase permanent magnet synchronous machines (PMSM) with different phase shifts. It aims to analyze and compare the impacts of different phase shifts on harmonic levels.
Technical Paper

Choosing the Best Lithium Battery Technology in the Hybridization of Ultralight Aircraft

2024-06-12
2024-37-0017
Many research centers and companies in general aviation have been devoting efforts to the electrification of propulsive plants to reduce environmental impact and/or increase safety. Even if the final goal is the elimination of fossil fuels, the limitations of today's battery in terms of energy and power densities suggest the adoption of hybrid-electric solutions that combine the advantages of conventional and electric propulsive systems, namely reduced fuel consumption, high peak power, and increased safety deriving from redundancy. Today, lithium batteries are the best commercial option for the electrification of all means of transportation. However, lithium batteries are a family of technologies that presents a variety of specifications in terms of gravimetric and volumetric energy density, discharge and charge currents, safety, and cost.
Technical Paper

CFD Methodology Development to Predict Lubrication Effectiveness in Electromechanical Actuators

2024-06-01
2024-26-0466
Electromechanical actuators (EMAs) play a crucial role in aircraft electrification, offering advantages in terms of aircraft-level weight, rigging and reliability compared to hydraulic actuators. To prevent backdriving, skewed roller braking devices called "no-backs" are employed to provide braking torque. These technology components are continuing to be improved with analysis driven design innovations eg. U.S. Pat. No. 8,393,568. The no-back mechanism has the rollers skewed around their own transverse axis that allow for a combination of rolling and sliding against the stator surfaces. This friction provides the necessary braking torque that prevents the backdriving. By controlling the friction radius and analyzing the Hertzian contact stresses, the brake can be sized for the desired duty cycle. No-backs can be configured to provide braking torque for both tensile and compressive backdriving loads.
Technical Paper

Aerospace Vehicle Motion Simulation with Real-Time Telemetry Data

2024-06-01
2024-26-0483
In any aerospace mission, after the vehicle has taken off, the visual is lost and the information about its current state is only through the sensor data telemetered in real-time. Very often, this data is difficult to perceive and analyze. In such cases, a 3D, near to real representation of the data can immensely improve the understanding of the current state of mission and can aid in real-time decision making if possible. Generally, any aerospace vehicle carries onboard an inertial system along with other sensors, which measures the position and attitude of the vehicle. This data is communicated to ground station. The received telemetry data is encoded as bytes and sent as packets through the network using the Universal Datagram Protocol (UDP).  The transmitted data is often available in a very low frequency, which is not desirable for a smooth display. It is therefore necessary to interpolate the data between intervals based on the time elapsed since last rendered frame.
Technical Paper

Deep Learning-Based Digital Twining Models for Inter System Behavior and Health Assessment of Combat Aircraft Systems

2024-06-01
2024-26-0478
Modern combat aircraft demands efficient maintenance strategies to ensure operational readiness while minimizing downtime and costs. Innovative approaches using Digital Twining models are being explored to capture inter system behaviours and assessing health of systems which will help maintenance aspects. This approach employs advanced deep learning protocols to analyze the intricate interactions among various systems using the data collected from various systems. The research involves extensive data collection from sensors within combat aircraft, followed by data preprocessing and feature selection, using domain knowledge and correlation analysis. Neural networks are designed for individual systems, and hyper parameter tuning is performed to optimize their performance. By combining the outputs of these during the model integration phase, an overall health assessment of the aircraft will be generated.
Technical Paper

Comparative Analysis of Axial Flux and Radial Flux Motors for UAV Propulsion: Design and Suitability Assessment

2024-06-01
2024-26-0467
In the architecture of an Unmanned Aerial Vehicle (UAV), a crucial component responsible for the propulsion system is the electric motor. Over the years, different types of electric motors, including Brushless Direct Current (BLDC), have supported the UAV’s propulsion system in diverse configurations. However, in the context of flux flow, the Radial Flux Permanent Magnet Motor (RFPMM) has been given more priority than the Axial Flux Permanent Magnet Motor (AFPMM) due to its sustainability in design and construction. Nevertheless, the AFPMM boasts higher speed, power density, lower weight, and greater efficiency than the RFPMM, because of its shorter flux path and the absence of end-turn winding. Therefore, this paper focuses on conducting a suitability analysis of an AFPMM as a shaft-connected propeller-mounted motor, with the intention of replacing the RFPMM in UAV applications.
Technical Paper

Hybrid Cooling System for Thermal Management in Electric Aerial Vehicles

2024-06-01
2024-26-0468
Continuous improvements and innovations towards sustainability in the aviation industry has brought interest in electrified aviation. Electric aircrafts have short missions in which the temporal variability of thermal loads are high. Lithium-ion (Li-ion) batteries have emerged as prominent power source candidate for electric aircrafts and Urban Air Mobility (UAM). UAMs and Electric aircrafts have large battery packs with battery capacity ranging in hundreds or thousands of kWh. If the battery is exposed to temperatures outside the optimum range, the life and the performance of the battery reduces drastically. Hence, it is crucial to have a Thermal Management System (TMS) which would reduce the heat load on battery in addition to cabin, and machinery thermal loads. Thermal management can be done through active or passive cooling. Adding a passive cooling system like Phase Change Material (PCM) to the TMS reduces the design maximum thermal loads.
Technical Paper

Automatic Maneuver Detection in Flight Data using Wavelet Transform and Deep Learning Algorithms

2024-06-01
2024-26-0462
The evaluation of aircraft characteristics through flight test maneuvers is fundamental to aviation safety and understanding flight attributes. This research project proposes a comprehensive methodology to detect and analyze aircraft maneuvers using full flight data, combining signal processing and machine learning techniques. Leveraging the Wavelet Transform, we unveil intricate temporal details within flight data, uncovering critical time-frequency insights essential for aviation safety. The integration of Long Short-Term Memory (LSTM) models enhances our ability to capture temporal dependencies, surpassing the capabilities of machine learning in isolation. These extracted maneuvers not only aid in safety but also find practical applications in system identification, air-data calibration, and performance analysis, significantly reducing pre-processing time for analysts.
Technical Paper

Sustainable Microalgae-Membrane Photobioreactor (MPBR) System for Onboard Oxygen Production in an Aircraft

2024-06-01
2024-26-0402
The purpose of the Air Generation System is to provide a constant supply of conditioned fresh air to meet the necessary oxygen availability and to prevent carbon dioxide (CO2) concentrations for the occupants in an aircraft. The engine bleed energy or electrical load energy consumed towards this circumstance accounts to be approx. 5% of total fuel burn and in turn, contributes to the global emissions of greenhouse gases. This paper studies the improvement areas of the present conventional system such as fuel burn consumption associated with an aircraft environmental control system (ECS) depending on, the amount of bleed and ram air usage, electric power consumption. Improved systems for propulsion, power generation, sustainability, hybridization, and environmental control can be desirable for an aircraft.
Technical Paper

Study of Different Designs of Chevrons for Effective Noise Reduction in Jet Engines

2024-06-01
2024-26-0408
Due to their remarkable efficiency and efficacy, chevrons have emerged as a prominent subject of investigation within the Aviation Industry, primarily aimed at mitigating aircraft noise levels and achieving a quieter airborne experience. Extensive research has identified the engine as the primary source of noise in aircraft, prompting the implementation of chevrons within the engine nozzle. These chevrons function by inducing streamwise vortices into the shear layer, thereby augmenting the mixing process and resulting in a noteworthy reduction of low-frequency noise emissions. Our paper aims to conduct a comparative computational analysis encompassing seven distinct chevron designs and a design without chevrons. The size and configuration of the chevrons with the jet engine nacelle were designed to match the nozzle diameter of 100.48mm and 56.76mm, utilizing the advanced SolidWorks CAD modeling software.
Technical Paper

Energy Consumption in Lightweight Electric Aircraft

2024-06-01
2024-26-0403
Electric aircraft have emerged as a promising solution for sustainable aviation, aiming to reduce greenhouse gas emissions and noise pollution. Efficiently estimating and optimizing energy consumption in these aircraft is crucial for enhancing their design, operation, and overall performance. This paper presents a novel framework for analyzing and modeling energy consumption patterns in lightweight electric aircraft. A mathematical model is developed, encompassing key factors such as aircraft weight, velocity, wing area, air density, coefficient of drag, and battery efficiency. This model estimates the total energy consumption during steady-level flight, considering the power requirements for propulsion, electrical systems, and auxiliary loads. The model serves as the foundation for analyzing energy consumption patterns and optimizing the performance of lightweight electric aircraft.
Technical Paper

Thermal Analysis of Prismatic Core Sandwich Structural Panel for Hypersonic Application

2024-06-01
2024-26-0422
Hypersonic flight vehicles have potential applications in strategic defence, space missions, and future civilian high-speed transportation systems. However, structural integration has significant challenges due to extreme aero-thermo-mechanical coupled effects. Scramjet-powered air-breathing hypersonic vehicles experience extreme heat loads induced by combustion, shock waves and viscous heat dissipation. An active cooling thermal protection system for scramjet applications has the highest potential for thermal load management, especially for long-duration flights, considering the weight penalty associated with the heavier passive thermal insulation structures. We consider the case of active cooling of scramjet engine structural walls with endothermic hydrocarbon fuel. We have developed a semi-analytical quasi-2D heat transfer model considering a prismatic core single cooling channel segment as a representative volume element (RVE) to analyse larger-scale problems.
Technical Paper

Development of an Autonomous Blimp (Airship) for Indoor Navigation

2024-06-01
2024-26-0436
Uncrewed Aerial vehicles are useful for a multitude of applications in today’s age, covering a wide variety of fields such as defense, environmental science, meteorology, emergency responders, search and rescue operations, entertainment robotics, etc. Different types of aircrafts such as fixed wing UAVs, rotor wing UAVs are used for the mentioned applications depending upon the application requirements. One such category of UAVs is the lighter-than-air aircrafts, that provide their own set of advantages over the other types of UAVs. Blimps are among the participants of the lighter-than-air category that are expected to offer advantages such as higher endurance and range, and safer and more comfortable Human-machine-Interaction, etc. as compared to fixed wing and rotor wing UAVs due to their design. A ROS (Robot Operating System) based control system was developed for controlling the blimp.
Technical Paper

A CDMA Based Approach for QoS Improvement in Intra-Aircraft Wireless Sensor Networks (WSN)

2024-06-01
2024-26-0435
Aviation industry is striving to leverage the technological advancements in connectivity, computation and data analytics. Scalable and robust connectivity enables futuristic applications like smart cabins, prognostic health management (PHM) and AI/ML based analytics for effective decision making leading to flight operational efficiency, optimized maintenance planning and aircraft downtime reduction. Wireless Sensor Networks (WSN) are gaining prominence on the aircraft for providing large scale connectivity solution that are essential for implementing various health monitoring applications like Structural Health Monitoring (SHM), Prognostic Health Management (PHM), etc. and control applications like smart lighting, smart seats, smart lavatory, etc. These applications help in improving passenger experience, flight operational efficiency, optimized maintenance planning and aircraft downtime reduction.
Technical Paper

Aircraft Weather Data Representation and Threat Management for Connected Weather Applications

2024-06-01
2024-26-0439
Aviation industry has been continuously striving for reducing the number of flight crew in the aircraft cockpit for balancing operational efficiency with the flight economics. Concepts like Reduced Crew Operations (RCO) and Single Pilot Operations (SPO) are being experimented in this direction. In RCO and SPO, additional aid/system is needed for reducing the pilot’s workload and to help him/her in taking right decisions. Weather situational awareness and management of weather-related threats are significant part of the workload the pilot is subjected during the flight. Weather information presented to the pilot in the cockpit is obtained either from an onboard weather radar on larger commercial aircrafts or from other sources like Air Traffic Control, ADS-B Flight Information Services, Connected weather services, etc.
Technical Paper

Enhancing Sustainable Aviation through Contrail Management – A Framework for Multiple Platforms

2024-06-01
2024-26-0444
Effective contrail management while ensuring operational and economic efficiencies for flight services is essential for providing services with minimal adverse environmental impact. The paper explores various aspects of contrail management applicable to different platforms such as Unmanned vehicles, Commercial airliners and Business & regional jets. The aspects unique to each platform such as flight levels of operation, fuel types, flight endurance and radius of operation have been analyzed. Expanse of 5G network is resulting in increased flight activity at flight levels not envisaged hitherto. The paper also dwells on the ramifications of the increased proliferation of different platforms at newer flight levels from the perspective of contrail management.
Technical Paper

High Payload Fraction UAV Design and Performance Evaluation

2024-06-01
2024-26-0442
Unmanned Aerial Vehicles (UAVs), or drones, are aerial platforms with diverse applications. Their design is shaped by specific constraints, driving a multidisciplinary, iterative process encompassing aerodynamics, structures, flight mechanics and other domains. This paper describes the design of a fixed-wing UAV tailored to competition requirements. The payload comprises golf balls with specific weight and dimensions. The requirements included maintaining a thrust-to-empty weight ratio below 1 and achieving a high payload fraction, calculated as the ratio of payload weight to total UAV weight. An optimization approach was introduced, altering the conventional UAV sizing process to enhance the payload fraction. This was achieved by adjusting the design points within the solution space derived from constraint analysis.
Technical Paper

Internet of Autonomous Vehicles for The Distribution System of Smart Cities

2024-04-09
2024-01-2882
With the development of internet technology and autonomous vehicles (AVs), the multimodal transportation and distribution model based on AVs will be a typical application paradigm in the smart city scenario. Before AVs carry out logistics distribution, it is necessary to plan a reasonable distribution path based on each customer point, and this is also known as Vehicle Routing Problem (VRP). Unlike traditional VRP, the urban logistics distribution process based on multimodal transportation mode will use a set of different types of AVs, mainly including autonomous ground vehicles and unmanned aerial vehicles (UAVs). It is worth pointing out that there is currently no research on combining the planning of AVs distribution paths with the trajectory planning of UAVs. To address this issue, this article establishes a bilevel programming model. The upper-level model aims to plan the optimal delivery plan for AVs, while the lower-level model aims to plan a driving trajectory for UAVs.
Technical Paper

Study on Aircraft Wing Collision Avoidance through Vision-Based Trajectory Prediction

2024-04-09
2024-01-2310
When the aircraft towing operations are carried out in narrow areas such as the hangars or parking aprons, it has a high safety risk for aircraft that the wingtips may collide with the surrounding aircraft or the airport facility. A real-time trajectory prediction method for the towbarless aircraft taxiing system (TLATS) is proposed to evaluate the collision risk based on image recognition. The Yolov7 module is utilized to detect objects and extract the corresponding features. By obtaining information about the configuration of the airplane wing and obstacles in a narrow region, a Long Short-Term Memory (LSTM) encoder-decoder model is utilized to predict future motion trends. In addition, a video dataset containing the motions of various airplane wings in real traction scenarios is constructed for training and testing.
Technical Paper

Dynamic Modeling of Quadrotor-Slung-Load System: A Model Based on the Quasi-Coordinates Approach

2024-04-09
2024-01-2312
With the development of hardware and control theory, the application of quadcopters is constantly expanding. Quadcopters have emerged in many fields, including transportation, exploration, and object grabbing and placement. These application scenarios require accurate, stable, and rapid control, and a suitable dynamic model is one of the prerequisites. At present, many works are related to it, most of which are modeled using the Newton-Euler method. Some works have also adopted other methods, including the Lagrangian and Hamiltonian methods. This article proposes a new method that solves the Hamiltonian equation of a quadcopter expressed in quasi-coordinate. The external forces and motion of the body are expressed in the quasi-coordinate system of the body, and solved through the Hamiltonian equation. This method simplifies operations and improves computational efficiency. Additionally, a single pendulum is attached to the quadcopter to simulate application scenarios.
X